Observations on hypervelocity impact damage sustained by multi-layered insulation foils exposed in low Earth orbit and simulated in the laboratory

2003 ◽  
Vol 29 (1-10) ◽  
pp. 307-316 ◽  
Author(s):  
Giles A. Graham ◽  
Anton T. Kearsley ◽  
Ian P. Wright ◽  
Mark J. Burchell ◽  
Emma A. Taylor
2017 ◽  
Vol 204 ◽  
pp. 492-499 ◽  
Author(s):  
A T Kearsley ◽  
J L Colaux ◽  
D K Ross ◽  
P J Wozniakiewicz ◽  
L Gerlach ◽  
...  

Author(s):  
Yuki Mando ◽  
Koji Tanaka ◽  
Takayuki Hirai ◽  
Shirou Kawakita ◽  
Masumi Higashide ◽  
...  

Abstract Space debris travels at a velocity of 7-8 km/s in low Earth orbit (LEO) and at 3 km/s in geostationary Earth orbit (GEO). An impact between space debris and spacecraft will result in tremendous damage. In particular, particles less than 1mm in diameter pose a risk of causing permanent sustained discharge (PSD). PSD may affect a satellite’s power system. The effect on solar arrays has been well-studied given their large area, but the effect on the bundle of a satellite’s wire harness (called the power harness) has yet to be clarified, even though the power harness is usually exposed to the space environment without protection. We conducted hypervelocity impact experiments using a two-stage light gas gun, and investigated the risk resulting in PSD from hypervelocity impacts of particles less than 1mm in size. In addition, we compared two kinds of circuit configurations: a more realistic circuit configuration with internal resistance and a circuit configuration without it, so as to investigate whether internal resistance affects the occurrence of PSD. Stainless steel and aluminum oxide projectiles measuring from 0.3 to 1 mm in diameter were gun-accelerated up to 7.16 km/s. Targets entailed a three-layered power harness under a simulated power condition of typical satellites operating in LEO or GEO. As a result, 11 of 28 shots resulted in PSD. With the more realistic circuit configuration we could not confirm any results regarding PSD. We thus found that PSD is less likely to occur in a more realistic circuit configuration.


Author(s):  
Leslie E. Lamberson ◽  
Ares J. Rosakis

Hypervelocity impact is a rising concern in spacecraft missions where man-made debris in low-earth orbit as well as micrometeroids have the potential to damage not only the structural components, but also the optical, electrical, and thermal components of a space asset. Little has been investigated regarding damage mechanisms and dynamic fracture mechanics resulting from a hypervelocity impact in-situ. Two optical techniques, the methods of photoelasticity and caustics, in conjunction with high-speed photography are used to examine stress waves from impact of unloaded plates, as well as pre-cracked and pre-loaded plates in tension. The resulting photographs are analyzed to extract information regarding stress wave interactions, crack speeds and the dynamic stress field ahead of the moving cracks.


Author(s):  
Leslie E. Lamberson ◽  
Ares J. Rosakis

Hypervelocity impact is a rising concern in spacecraft missions where man-made debris in low-earth orbit as well as micrometeroids have the potential to damage not only the structural components, but also the optical, electrical, and thermal components of a space asset. Little has been investigated regarding damage mechanisms and dynamic fracture mechanics resulting from a hypervelocity impact in-situ. Two optical techniques, the methods of photoelasticity and caustics, in conjunction with high-speed photography are used to examine stress waves from impact of unloaded plates, as well as pre-cracked and pre-loaded plates in tension. The resulting photographs are analyzed to extract information regarding stress wave interactions, crack speeds and the dynamic stress field ahead of the moving cracks.


1983 ◽  
Author(s):  
I. KATZ ◽  
D. COOKE ◽  
D. PARKS ◽  
M. MANDELL ◽  
A. RUBIN

Sign in / Sign up

Export Citation Format

Share Document