Influence of thickness of composite layers on failure behaviors of carbon fiber reinforced plastics/aluminum alloy electromagnetic riveted lap joints under high-speed loading

2018 ◽  
Vol 115 ◽  
pp. 1-9 ◽  
Author(s):  
Junjia Cui ◽  
Dongying Dong ◽  
Xu Zhang ◽  
Xiaodong Huang ◽  
Guoxing Lu ◽  
...  
2020 ◽  
Vol 54 (29) ◽  
pp. 4547-4555 ◽  
Author(s):  
Siwat Manomaisantiphap ◽  
Vipin Kumar ◽  
Takao Okada ◽  
Tomohiro Yokozeki

A large amount of electrically conductive fillers is needed to enhance a Carbon Fiber Reinforced Plastics (CFRP) electrical conductivity enough to withstand lightning strikes of peak currents. However, such large alien constituents hamper the inherent good mechanical properties of CFRP structures. In this work, a solution has been proposed to retain both desired properties in a CFRP laminate. Layer-wise hybrid laminate has been demonstrated as a solution for lightning strike protection of Carbon Fiber Reinforced Plastics (CFRP). Top few layers of a hybrid laminate are prepared using electrically conductive polymer-based resin (CF/C-POLY) to provide effective dissipation of lightning current while epoxy-based CFRP substrate (CF/Epoxy) provides the main structural strength. An insulating adhesive layer is used to bond CF/C-POLY and CF/Epoxy to prepare the laminate. The hybrid laminates were tested for their effectiveness against lightning strikes. Laminates were struck by modified lightning waveform of component A with peak current of -14 kA and -40 kA. The performance of the laminates against lightning strike were evaluated using high speed camera, high-speed and thermal camera. It is found that CF/C-POLY layer successfully defended the main structural component i.e. CF/Epoxy from lightning direct damage.


2016 ◽  
Vol 51 (22) ◽  
pp. 3197-3210 ◽  
Author(s):  
Junbeom Kwon ◽  
Jaeyoung Choi ◽  
Hoon Huh ◽  
Jungju Lee

This paper is concerned with evaluation and prediction of the tensile properties of carbon fiber-reinforced plastics laminates considering the strain rate effect at intermediate strain rates. Uniaxial tensile tests of carbon fiber-reinforced plastics laminates were conducted at various strain rates ranging from 0.001 s–1 to 100 s–1 using Instron 8801 and a high speed material testing machine to measure the variation of the elastic modulus and the ultimate tensile strength. Tensile test specimens were designed based on the ASTM standards and stacked unidirectionally such as [0°], [90°] and [45°] to predict the elastic modulus of carbon fiber-reinforced plastics laminates with various stacking sequences. The axial strain was measured by the digital image correlation method using a high speed camera and ARAMIS software to enhance the accuracy of the strain measurement. A prediction model of the elastic modulus of carbon fiber-reinforced plastics laminates is newly proposed in consideration of the laminate theory and the tensile properties of unidirectional carbon fiber-reinforced plastics laminates. The prediction model was utilized to predict the tensile properties of [0°/90°]s laminates, [±45°]s laminates, and [0°/±45/90°]T laminates for validation of the model. The elastic moduli predicted were compared with the static and dynamic tensile test results to confirm the accuracy of the prediction model.


Sign in / Sign up

Export Citation Format

Share Document