scholarly journals Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

2018 ◽  
Vol 119 ◽  
pp. 40-44 ◽  
Author(s):  
Bo Song ◽  
Brett Sanborn
2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Xuedong Zhai ◽  
Eric A. Nauman ◽  
Yizhou Nie ◽  
Hangjie Liao ◽  
Roy J. Lycke ◽  
...  

We experimentally determined the tensile stress–strain response of human muscle along fiber direction and compressive stress–strain response transverse to fiber direction at intermediate strain rates (100–102/s). A hydraulically driven material testing system with a dynamic testing mode was used to perform the tensile and compressive experiments on human muscle tissue. Experiments at quasi-static strain rates (below 100/s) were also conducted to investigate the strain-rate effects over a wider range. The experimental results show that, at intermediate strain rates, both the human muscle's tensile and compressive stress–strain responses are nonlinear and strain-rate sensitive. Human muscle also exhibits a stiffer and stronger tensile mechanical behavior along fiber direction than its compressive mechanical behavior along the direction transverse to fiber direction. An Ogden model with two material constants was adopted to describe the nonlinear tensile and compressive behaviors of human muscle.


2020 ◽  
Vol 46 (1) ◽  
pp. 1183-1188 ◽  
Author(s):  
Shaoxiong Xie ◽  
Zhi Tan ◽  
Laiming Jiang ◽  
Rui Nie ◽  
Qian Xu ◽  
...  

2014 ◽  
Vol 566 ◽  
pp. 80-85
Author(s):  
Kenji Nakai ◽  
Takashi Yokoyama

The present paper is concerned with constitutive modeling of the compressive stress-strain behavior of selected polymers at strain rates from 10-3 to 103/s using a modified Ramberg-Osgood equation. High strain-rate compressive stress-strain curves up to strains of nearly 0.08 for four different commercially available extruded polymers were determined on the standard split Hopkinson pressure bar (SHPB). The low and intermediate strain-rate compressive stress-strain relations were measured in an Instron testing machine. Six parameters in the modified Ramberg-Osgood equation were determined by fitting to the experimental stress-strain data using a least-squares fit. It was shown that the monotonic compressive stress-strain behavior over a wide range of strain rates can successfully be described by the modified Ramberg-Osgood constitutive model. The limitations of the model were discussed.


2013 ◽  
Vol 683 ◽  
pp. 314-317
Author(s):  
Hong Fu Xiang ◽  
Jing Hai Tao ◽  
Ji Heng Wang ◽  
Hui Li ◽  
An Lun Dai

A beta phase containing titanium aluminum compound was prepared. Isothermal Fatigue(IF) were subjected at 650 °C at three strain rates, such as 6.67×10-3s-1, 6.67×10-4s-1, 6.67×10-5s-1to determine the effect of strain rate on cyclic stress-strain response (CSSR) of TiAl alloy during IF tests. The curves of cyclic stress-strain response were discussed and dislocations configuration were also observed by TEM. The results show that strain rates have an apparent effect on CSSR of TiAl alloy during IF tests and CSSR was identified that it had a close relationship with dislocation configuration and deformation twin.


2013 ◽  
Vol 779-780 ◽  
pp. 122-125 ◽  
Author(s):  
Xin Le Zhang ◽  
Hai Cao ◽  
Xiao Hui Guo

The axial compressive stress-strain relationship of concrete reflects its basic mechanical performance, which is important in analyzing the performance of materials, especially in the analyzing of the elastic modulus, ductility and carrying capacity. In order to study the mechanical properties of polymer-modified concrete and steel fiber reinforced polymer concrete, a comparative study of the compressive stress-strain relationship of polymer-modified concrete and steel fiber reinforced polymer concrete was carried out, the complete compressive stress-strain curves were obtained, and the influence of polymer and steel fiber on concrete elastic modulus and compressive ductility was also studied. It is demonstrated that the compressive ductility index of steel fiber reinforced polymer concrete can reach 7.39 which is greater than that of polymer-modified concrete with the same ingredients. The results also show that steel fiber reinforced polymer concrete is better than both polymer-modified concrete and steel fiber reinforced concrete.


2010 ◽  
Vol 152-153 ◽  
pp. 1213-1216
Author(s):  
Wen Huang ◽  
Zhong Wei Huang

A statistical constitutive model, which takes account the effect of strain rate, was presented to describe the stress-strain relationship of brittle fiber bundles. To verify its reliability, tensile tests on two kinds of brittle fibers: glass fiber and SiC fiber, were carried out at different strain rates, and the stress-strain curves were obtained. It was found that the modulus E, the strength and the fracture strain of these fiber bundles all increase with increasing strain rate. The simulated stress-strain curves, derived from the constitutive model, fit the tested results well, which indicates that the model is valid and reliable.


Sign in / Sign up

Export Citation Format

Share Document