New approach for calculating the energy level of quantum harmonic oscillator with invariable energy gap

Optik ◽  
2014 ◽  
Vol 125 (9) ◽  
pp. 1997-1999
Author(s):  
Gang Ren ◽  
Jian-ming Du ◽  
Haijun Yu
2018 ◽  
Vol 33 (26) ◽  
pp. 1850150 ◽  
Author(s):  
Won Sang Chung ◽  
Hassan Hassanabadi

Based on the one-dimensional quantum mechanics on (anti)-de Sitter background [W. S. Chung and H. Hassanabadi, Mod. Phys. Lett. A 32, 26 (2107)], we discuss the Ramsauer–Townsend effect. We also formulate the WKB method for the quantum mechanics on (anti)-de Sitter background to discuss the energy level of the quantum harmonic oscillator and quantum bouncer.


1996 ◽  
Vol 07 (05) ◽  
pp. 645-653
Author(s):  
H. C. LEE ◽  
K. L. LIU ◽  
C. F. LO

We apply the method of State-dependent Diagonalization to study the eigenstates of the relativistic quantum harmonic oscillator in the low relativistic limit. The relativistic corrections of the energy eigenvalues of the quantum harmonic oscillator are evaluated for different values of the relativistic parameter α ≡ ħω0 / m0c2. Unlike the conventional exact diagonalization, this new method is shown to be very efficient for evaluating the energy eigenvalues and eigenfunctions. We have also found that for non-zero α the eigenfunctions of the system become more localized in space and that the ground state of the SHO (i.e., the α = 0 case) turns into a squeezed state. Furthermore, since our system is a special case of the quantum harmonic oscillator with a velocity-dependent anharmonic potential, this new approach should be very useful for investigating the cases with more complicated velocity-dependent anharmonic potentials.


2020 ◽  
Vol 110 (7) ◽  
pp. 1759-1782
Author(s):  
Ameur Dhahri ◽  
Franco Fagnola ◽  
Hyun Jae Yoo

2014 ◽  
Vol 165 (6) ◽  
pp. 1149-1168 ◽  
Author(s):  
Vinesh Solanki ◽  
Dmitry Sustretov ◽  
Boris Zilber

2019 ◽  
Vol 26 (04) ◽  
pp. 1950023
Author(s):  
Salvatore Lorenzo ◽  
Mauro Paternostro ◽  
G. Massimo Palma

Quantum non-Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with. In this work, making use of a quantum collision model, a formalism initiated by Sudarshan and his school, we will analyse the efficiency with which the information about a single qubit gained by a quantum harmonic oscillator, acting as a meter, is transferred to a bosonic environment. We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non-Markovian and non-darwinistic behaviours.


Sign in / Sign up

Export Citation Format

Share Document