Topological charge determination of linearly polarized Lorentz-Gaussian vortex beam

Optik ◽  
2017 ◽  
Vol 128 ◽  
pp. 228-234 ◽  
Author(s):  
Qiufang Zhan ◽  
Rongfu Zhang ◽  
Yu Miao ◽  
Guanxue Wang ◽  
Xinmiao Lu ◽  
...  
2021 ◽  
Author(s):  
Cheng Cui ◽  
Zheng Liu ◽  
Bin Hu ◽  
Yurong Jiang ◽  
Juan Liu

Abstract Tunable metasurface devices are considered to be an important link for metasurfaces to practical applications due to their functional diversity and high adaptability to the application scenarios. Metasurfaces have unique value in the generation of vortex beams because they can realize light wavefronts of any shape. In recent years, several vortex beam generators using metasurfaces have been proposed. However, the topological charge generally lacks tunability, which reduces the scope of their applications. Here, we propose an active tunable multi-channeled vortex beam switch based on a moiré structure composed of two cascaded dielectric metasurfaces. The simulation results show that when linearly polarized light with a wavelength of 810 nm is incident, the topological charge from -6 to +6 can be continuously generated by relatively rotating the two metasurfaces. Meanwhile, different topological charges are deflected to different spatial channels, realizing the function of multi-channeled signal transmission. We also study the efficiency and broadband performance of the structure. The proposed multi-channeled separation method of vortex beams that can actively tune topological charges paves the way for the compactness and functional diversity of devices in the fields of optical communications, biomedicine, and optoelectronics.


2019 ◽  
Vol 114 (20) ◽  
pp. 201106 ◽  
Author(s):  
Xingyuan Lu ◽  
Chengliang Zhao ◽  
Yifeng Shao ◽  
Jun Zeng ◽  
Sander Konijnenberg ◽  
...  

2019 ◽  
Vol 27 (5) ◽  
pp. 7803 ◽  
Author(s):  
Daiyin Wang ◽  
Hongxin Huang ◽  
Yoshinori Matsui ◽  
Hiroshi Tanaka ◽  
Haruyoshi Toyoda ◽  
...  

2022 ◽  
Vol 9 ◽  
Author(s):  
Shuwei Qiu ◽  
Jinwen Wang ◽  
Xin Yang ◽  
Mingtao Cao ◽  
Shougang Zhang ◽  
...  

A vector beam with the spatial variation polarization has attracted keen interest and is progressively applied in quantum information, quantum communication, precision measurement, and so on. In this letter, the spectrum observation of the rotational Doppler effect based on the coherent interaction between atoms and structured light in an atomic vapor is realized. The geometric phase and polarization of the structured beam are generated and manipulated by using a flexible and efficacious combination optical elements, converting an initial linearly polarized Gaussian beam into a phase vortex beam or an asymmetric or symmetric vector beam. These three representative types of structured beam independently interact with atoms under a longitudinal magnetic field to explore the rotational Doppler shift associated with the topological charge. We find that the rotational Doppler broadening increases obviously with the topological charge of the asymmetric and symmetric vector beam. There is no rotational Doppler broadening observed from the spectrum of the phase vortex beam, although the topological charge, and spatial profile of the beam change. This study can be applied to estimate the rotational velocity of the atom-level or molecule-level objects, measure the intensity of magnetic fields and study the quantum coherence in atomic ensembles.


1996 ◽  
Vol 165 ◽  
pp. 263-269
Author(s):  
Simon Johnston

PSR B1259-63 is a 47-millisecond pulsar which was discovered in a high frequency survey of the galactic plane (Johnston et al. 1992a) and was subsequently found to be in a highly eccentric orbit with a main-sequence Be star known as SS 2883 (Johnston et al. 1992b). Radio observations of the pulsar led to a phase connected timing solution which predicted the epoch of periastron to be 1994 January 9 (MJD 49361.2); optical observations of the Be star led to a determination of its mass and of the size of its circumstellar disk (Johnston et al. 1994a): the star is of approximate spectral type B1e, with mass 10 M⊙ and radius 6 R⊙. If this mass is correct and the pulsar has a mass of 1.4 M⊙, then the inclination angle of the plane of the orbit with respect to the sky is 35°. This pulsar has an unusually flat radio spectrum compared to most pulsars, which makes it easily detectable up to 8.4 GHz. The narrow pulse permits dispersion and scattering measurements for studying the ionized plasma in the system. Moreover, the pulses are highly linearly polarized and permit determination of the rotation measure (RM), allowing measurements of the magnetic field along the line of sight. The 3.5-yr orbit of the pulsar around its companion thus provides us with an excellent probe of the stellar wind of the Be star over a wide frequency range.


Sign in / Sign up

Export Citation Format

Share Document