Sensitivity enhancement of localized SPR sensor towards Pb(II) ion detection using natural bio-polymer based carrageenan

Optik ◽  
2018 ◽  
Vol 168 ◽  
pp. 784-793 ◽  
Author(s):  
Suraya Abdullah ◽  
Nur Hidayah Azeman ◽  
Nadhratun Naiim Mobarak ◽  
Mohd Saiful Dzulkefly Zan ◽  
Ahmad Ashrif A. Bakar
RSC Advances ◽  
2019 ◽  
Vol 9 (71) ◽  
pp. 41729-41736 ◽  
Author(s):  
Wan Mohd Ebtisyam Mustaqim Mohd Daniyal ◽  
Yap Wing Fen ◽  
Nur Ain Asyiqin Anas ◽  
Nur Alia Sheh Omar ◽  
Nur Syahira Md Ramdzan ◽  
...  

This work focus on sensitivity enhancement of surface plasmon resonance (SPR) optical sensor by modifying the gold thin film with nanocrystalline cellulose (NCC) based material for zinc ion (Zn2+) detection.


2021 ◽  
Author(s):  
Nur Hasiba Kamaruddin ◽  
Nur Hidayah Azeman ◽  
Mohd Hadri Hafiz Mokhtar ◽  
Ahmad Ashrif A Bakar

This work demonstrates the effect of Ag/Au and Au/Ag/Au nanolayers on the performance of chitosan (CS)-graphene oxide (GO) surface plasmon resonance (SPR) sensors for Pb(II) ion detection. The CS-GO SPR sensors are  fabricated on a bi-metallic 40 nm Ag/10 nm Au and tri-metallic 10 nm Au/40 nm Ag/10 nm Au nanolayers. The  sensors are tested with Pb(II) ion solution of concentrations 0.1 to 5 ppm using SPR spectroscopy. The results show  that the CS-GO SPR sensor on the bimetallic Ag/Au gives a gradual shift in SPR angle from 0.1 to 1 ppm and slightly  linear from 3 to 5 ppm. Meanwhile, the CS-GO SPR sensor on the tri-metallic Au/Ag/Au nanolayers provides an  extended linearity range from 1 to 5 ppm with the highest shift in SPR angle of 1.8o. Additionally, the tri-metallic CS-GO SPR sensor also exhibits the greatest SNR of 0.25 as compared to 0.15 of the one on the bi-metallic nanolayers.  Thus, the studies prove that the tri-metallic Au/Ag/Au nanolayer is an effective and simple approach to improve the performance of a CS-GO SPR sensor for Pb(II) ion detection.


2021 ◽  
Author(s):  
Guiqiang Wang ◽  
Liang Huang

Abstract In this paper, a silver based surface plasmon resonance (SPR) sensor with graphene and dielectric layer was presented. The influences of dielectric layer and graphene on sensitivity and other sensing properties were theoretically calculated and then comprehensively discussed. The refractive index sensitivities for composite silver film based SPR sensors with graphene and dielectric layer could be increased by 29% and 288% than that of monolayer silver film based SPR sensor, respectively. Further, the sensitivity could be enhanced by 202% when combining graphene and dielectric layer together. Considering the high adsorptive capacity of graphene for biochemical molecules, the composite silver film with both dielectric layer and graphene would have great potential application in biochemical sensing fields. Further, BSA protein was successfully used to verify the biochemical sensing ability of proposed SPR sensor. The shift of resonance angle is nearly 3.1 folds than that of monolayer silver based SPR sensor.


2021 ◽  
Vol 13 (3) ◽  
pp. 58
Author(s):  
Ananthan Nisha ◽  
Pandaram Maheswari ◽  
Santhanakumar Subanya ◽  
Ponnusamy Munusamy Anbarasan ◽  
Karuppaiya Balasundaram Rajesh ◽  
...  

We present a surface plasmon resonance (SPR) structure based on Kretschmann configuration incorporating bimetallic layers of noble (Ag) and magnetic materials (Ni) over CaF2 prism. Extensive numerical analysis based on transfer matrix theory has been performed to characterize the sensor response considering sensitivity, full width at half maxima, and minimum reflection. Notably, the proposed structure, upon suitably optimizing the thickness of bimetallic layer provides consistent enhancement of sensitivity over other competitive SPR structures. Hence we believe that this proposed SPR sensor could find the new platform for the medical diagnosis, chemical examination and biological detection. Full Text: PDF ReferencesJ. Homola, S.S. Yee, G. Gauglitz, "Surface plasmon resonance sensor based on planar light pipe: theoretical optimization analysis", Sens. Actuators B Chem. 54, 3 (1999). CrossRef X.D. Hoa, A.G. Kirk, M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress", Bioelectron, 23, 151 (2007). CrossRef Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, D. Fan, "Tuning and Sensitivity Enhancement of Surface Plasmon Resonance Biosensor With Graphene Covered Au-MoS 2-Au Films", IEEE Photonics J. 8(6), 4803308 (2016). CrossRef T. Srivastava, R. Jha, R. Das, "High-Performance Bimetallic SPR Sensor Based on Periodic-Multilayer-Waveguides", IEEE Photonics Technol. Lett. 23(20), 1448 (2011). CrossRef P.K. Maharana, R. Jha, "Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance", Sens. Actuators B Chem. 169, 161 (2012). CrossRef R. Verma, B.D. Gupta, R. Jha, "Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers", Sens. Actuators B Chem. 160, 623 (2011). CrossRef I. Pockrand, "Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings", Surf. Sci. 72, 577 (1978). CrossRef R. Jha, A. Sharma, "High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared", Opt. Lett. 34(6), 749 (2009). CrossRef E.V. Alieva, V.N. Konopsky, "Biosensor based on surface plasmon interferometry independent on variations of liquid’s refraction index", Sens. Actuators B Chem. 99, 90 (2004). CrossRef S.A. Zynio, A. Samoylov, E. Surovtseva, V. Mirsky, Y. Shirshov, "Bimetallic Layers Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance", Sensors 2, 62 (2002). CrossRef S.Y. Wu, H.P. Ho, "Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer", Proceedings IEEE Hong Kong Electron Devices Meeting 63 (2002). CrossRef B.H. Ong, X. Yuan, S. Tjin, J. Zhang, H. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor", Sens. Actuators B Chem. 114, 1028 (2006). CrossRef B.H. Ong, X. Yuan, Y. Tan, R. Irawan, X. Fang, L. Zhang, S. Tjin, "Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide", Lab Chip 7, 506 (2007). CrossRef X. Yuan, B. Ong, Y. Tan, D. Zhang, R. Irawan, S. Tjin, "Sensitivity–stability-optimized surface plasmon resonance sensing with double metal layers", J. Opt. A: Pure Appl. Opt. 8, 959, (2006). CrossRef M. Ghorbanpour, "A novel method for the production of highly adherent Au layers on glass substrates used in surface plasmon resonance analysis: substitution of Cr or Ti intermediate layers with Ag layer followed by an optimal annealing treatment", J. Nanostruct, 3, 309, (2013). CrossRef Y. Chen, R.S. Zheng, D.G. Zhang, Y.H. Lu, P. Wang, H. Ming, Z.F. Luo, Q. Kan, "Bimetallic chips for a surface plasmon resonance instrument", Appl. Opt. 50, 387 (2011). CrossRef N.H.T. Tran, B.T. Phan, W.J. Yoon, S. Khym, H. Ju, "Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves", J. Electron. Mater. 46, 3654 (2017). CrossRef D. Nesterenko Z. Sekkat, "Resolution Estimation of the Au, Ag, Cu, and Al Single- and Double-Layer Surface Plasmon Sensors in the Ultraviolet, Visible, and Infrared Regions", Plasmonics 8, 1585 (2013). CrossRef M.A. Ordal, R.J. Bell, R.W. Alexander, L.L. Long, M.R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W.", Appl. Opt. 24, 4493 (1985). CrossRef H. Ehrenreich, H.R. Philipp, D.J. Olechna, "Optical Properties and Fermi Surface of Nickel", Phys. Rev. 31, 2469 (1963). CrossRef S. Shukla, N.K. Sharma, V. Sajal, "Theoretical Study of Surface Plasmon Resonance-based Fiber Optic Sensor Utilizing Cobalt and Nickel Films", Braz. J. Phys. 46, 288 (2016). CrossRef K. Shah, N.K. Sharma, AIP Conf. Proc. 2009, 020040 (2018). [23] G. AlaguVibisha, Jeeban Kumar Nayak, P. Maheswari, N. Priyadharsini, A. Nisha, Z. Jaroszewicz, K.B. Rajesh, "Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu–Ni", Opt. Commun. 463, 125337 (2020). CrossRef A. Nisha, P. Maheswari, P.M. Anbarasan, K.B. Rajesh, Z. Jaroszewicz, "Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni)", Opt. Quantum Electron. 51, 19 (2019). CrossRef M.H.H. Hasib, J.N. Nur, C. Rizal, K.N. Shushama, "Improved Transition Metal Dichalcogenides-Based Surface Plasmon Resonance Biosensors", Condens.Matter 4, 49, (2019). CrossRef S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J.P. Pellaux, T. Gresch, M. Fischer, J. Faist, "Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range", Opt. Express 17, 293 (2009). CrossRef M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang,T. Ning, X. Liu, C Li, W. Zhanga, B. Mana, "Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene–WS2 hybrid nanostructures and Au–Ag bimetallic film", RSC Adv. 7, 47177 (2017). CrossRef P.K. Maharana, P. Padhy, R. Jha, "On the Field Enhancement and Performance of an Ultra-Stable SPR Biosensor Based on Graphene", IEEE Photonics Technol. Lett. 25, 2156 (2013). CrossRef


Sign in / Sign up

Export Citation Format

Share Document