Newly reflective bi-function beam splitter by SiO2 pencil-like arrays on silver plate

Optik ◽  
2021 ◽  
pp. 167289
Author(s):  
Zhisen Huang ◽  
Bo Wang ◽  
Zefan Lin ◽  
Kunhua Wen ◽  
Ziming Meng ◽  
...  
Keyword(s):  
Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3184
Author(s):  
Jing Li ◽  
Yonggang He ◽  
Han Ye ◽  
Tiesheng Wu ◽  
Yumin Liu ◽  
...  

Metasurface-based beam splitters attracted huge interest for their superior properties compared with conventional ones made of bulk materials. The previously reported designs adopted discrete metasurfaces with the limitation of a discontinuous phase profile. In this paper, we propose a dual-band beam splitter, based on an anisotropic quasi-continuous metasurface, by exploring the optical responses under x-polarized (with an electric field parallel to the direction of the phase gradient) and y-polarized incidences. The adopted metasurface consists of two identical trapezoidal silicon antenna arrays with opposite spatial variations that lead to opposite phase gradients. The operational window of the proposed beam splitter falls in the infrared and visible region, respectively, for x- and y-polarized light, resulting from the different mechanisms. When x-polarized light is incident, the conversion efficiency and total transmission of the beam splitter remains higher than 90% and 0.74 within the wavelength range from 969 nm to 1054 nm, respectively. In this condition, each array can act as a beam splitter of unequal power. For y-polarized incidence, the maximum conversion efficiency and transmission reach approximately 100% and 0.85, while the values remain higher than 90% and 0.65 in the wavelength range from 687 nm to 710 nm, respectively. In this case, each array can be viewed as an effective beam deflector. We anticipate that it can play a key role in future integrated optical devices.


Author(s):  
Sushil Kumar ◽  
Robin Thakur ◽  
Arvind Singhy ◽  
R.K. Tripathi ◽  
Muneesh Sethi

Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 198
Author(s):  
Geyu Tang ◽  
Huamao Huang ◽  
Yuqi Liu ◽  
Hong Wang

We propose a new compact polarization beam splitter based on the self-collimation effect of two-dimensional photonic crystals and photonic bandgap characteristics. The device is composed of a rectangular air holes-based polarization beam splitting structure and circular air holes-based self-collimating structure. By inserting the polarization beam splitting structure into the self-collimating structure, the TE and TM polarized lights are orthogonally separated at their junction. When the number of rows in the hypotenuse of the inserted rectangular holes is 5, the transmittance of TE polarized light at 1550 nm is 95.4% and the corresponding polarization extinction ratio is 23 dB; on the other hand, the transmittance of TM polarized light is 88.5% and the corresponding polarization extinction ratio is 37 dB. For TE and TM polarized lights covering a 100 nm bandwidth, the TE and TM polarization extinction ratios are higher than 18 dB and 30 dB, respectively. Compared with the previous polarization beam splitters, our structure is simple, the size is small, and the extinction ratio is high, which meets the needs of modern optical communications, optical interconnection, and optical integrated systems.


Sign in / Sign up

Export Citation Format

Share Document