Identification of interaction mechanisms during drag finishing by means of an original macroscopic numerical model

Author(s):  
Irati Malkorra ◽  
Hanène Souli ◽  
Christophe Claudin ◽  
Ferdinando Salvatore ◽  
Pedro Arrazola ◽  
...  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sajjad Beigmoradi ◽  
Mehrdad Vahdati

Purpose The purpose of this paper is to investigate the effect of a vibratory bed, as an assistant agent, on the improvement of the drag finishing process. The dynamics and kinematic of the process were surveyed in microscale for different frequencies and amplitudes and the results were compared to the basic process. Design/methodology/approach The discrete element tool was used to find out the effect of the vibratory bed on the drag finishing process. To this end, the Hertz-Mindlin model was used to investigate the contact of abrasive particles and workpiece. At the first stage, the numerical model was validated with the experimental results, and then the effect of different parameters on the finishing process was evaluated and compared with the basic case. Findings The chosen numerical model was in good agreement with the results measured in the previous literature. Moreover, the results show that not only vibrated bed enhances the contacts of abrasive particles to the workpiece, but it also increases the uniformity of the finished surface. Originality/value In comparison to the experiments, the discrete element technique consumes lower cost and time to estimate the optimum conditions of the finishing process, as well as it provides a good understanding of this phenomenon on the micro-scale.


2010 ◽  
Vol 13 (3) ◽  
pp. 78-87
Author(s):  
Hoai Cong Huynh

The numerical model is developed consisting of a 1D flow model and the morphological model to simulate the erosion due to the water overtopping. The step method is applied to solve the water surface on the slope and the finite difference method of the modified Lax Scheme is applied for bed change equation. The Meyer-Peter and Muller formulae is used to determine the bed load transport rate. The model is calibrated and verified based on the data in experiment. It is found that the computed results and experiment data are good agreement.


2015 ◽  
Vol 35 ◽  
pp. 268-271
Author(s):  
Michele Saroli ◽  
Michele Lancia ◽  
Marco Petitta ◽  
Gabriele Scarascia Mugnozza

2011 ◽  
Vol 2 (1) ◽  
pp. 1-12
Author(s):  
A. Hegyi ◽  
H. Vermeşan ◽  
V. Rus

Abstract In this paper we wish to present the numerical model elaborated in order to simulate some physical phenomena that influence the general deterioration of steel, whether hot dip galvanized or not, in reinforced concrete. We describe the physical and mathematical models, establishing the corresponding equation system, the initial and boundary conditions. We have also presented the numeric model associated to the mathematical model and the numeric methods of discretization and solution of the differential equations system that describes the mathematical model.


Sign in / Sign up

Export Citation Format

Share Document