Investigation of vibratory bed effect on abrasive drag finishing: a DEM study

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sajjad Beigmoradi ◽  
Mehrdad Vahdati

Purpose The purpose of this paper is to investigate the effect of a vibratory bed, as an assistant agent, on the improvement of the drag finishing process. The dynamics and kinematic of the process were surveyed in microscale for different frequencies and amplitudes and the results were compared to the basic process. Design/methodology/approach The discrete element tool was used to find out the effect of the vibratory bed on the drag finishing process. To this end, the Hertz-Mindlin model was used to investigate the contact of abrasive particles and workpiece. At the first stage, the numerical model was validated with the experimental results, and then the effect of different parameters on the finishing process was evaluated and compared with the basic case. Findings The chosen numerical model was in good agreement with the results measured in the previous literature. Moreover, the results show that not only vibrated bed enhances the contacts of abrasive particles to the workpiece, but it also increases the uniformity of the finished surface. Originality/value In comparison to the experiments, the discrete element technique consumes lower cost and time to estimate the optimum conditions of the finishing process, as well as it provides a good understanding of this phenomenon on the micro-scale.

2013 ◽  
Vol 376 ◽  
pp. 220-223
Author(s):  
Reza Alebrahim ◽  
Nik Abdullah Nik Mohamed ◽  
Sallehuddin Mohamed Haris ◽  
Salvinder Singh Karam Singh

The vibration analysis of a multi-cracked beam using discrete element technique (DET) was investigated in this study. Undamped simply supported beam was traversed by moving mass with constant speed and Euler Bernoulli beam theory was considered. Cracks are located in different positions and maximum deflection of mid-span was derived and compared. The results showed that increasing numbers of cracks in the beam causes more deflection while maximum deflection of beam takes longer time to build up. The results were validated by solving the equations generated using finite element method (FEM) and their comparison with already established results from previous similar studies (literatures) showed good agreement.


2011 ◽  
Vol 236-238 ◽  
pp. 2721-2724
Author(s):  
Shou Yi Bi ◽  
Xing Pei Liang

In this paper, using the discrete element method (PFC2D)particle flow procedure to establish a model of cylindrical silo, in the warehouse filled with particles within the reach of static equilibrium state, then the record of its wall static lateral pressure measurement value, while monitoring the measured dynamic wall pressure during the silo discharging. It was shown that the static pressure as well as the dynamic pressure simulated with the numerical model is in good agreement with the experimental results. So the discrete element method can give a new way to study dynamic question of silos.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 373
Author(s):  
Ivan Balić ◽  
Hrvoje Smoljanović ◽  
Boris Trogrlić ◽  
Ante Munjiza

The paper presents a failure analysis of the bell tower of the church of St. Francis of Assisi on Kaptol in Zagreb subjected to seismic activity using the finite-discrete element method—FDEM. The bell tower is a masonry building, and throughout history it has undergone multiple damages and reconstructions. It was significantly damaged during the earthquake in Zagreb which occurred on 22 March 2020 with a magnitude of 5.5. The analysis was performed on a simplified FDEM 2D numerical model which corresponds to the structure in its current pre-disaster state and the structure after the proposed post-disaster reconstruction. The obtained results showed a good agreement of the crack pattern in the numerical model and the cracks that occurred due to these earthquakes. In addition, the conclusions based on the conducted analysis can provide a better insight into the behaviour and serve as guidelines to engineers for the design of such and similar structures.


2018 ◽  
Vol 35 (1) ◽  
pp. 377-394 ◽  
Author(s):  
Ivana Uzelac ◽  
Hrvoje Smoljanovic ◽  
Milko Batinic ◽  
Bernardin Peroš ◽  
Ante Munjiza

Purpose This paper aims to present a new numerical model for geometric nonlinear analysis of thin-shell structures based on a combined finite-discrete element method (FDEM). Design/methodology/approach The model uses rotation-free, three-node triangular finite elements with exact formulation for large rotations, large displacements in conjunction with small strains. Findings The presented numerical results related to behaviour of arbitrary shaped thin shell structures under large rotations and large displacement are in a good agreement with reference solutions. Originality/value This paper presents new computationally efficient numerical model for geometric nonlinear analysis and prediction of the behaviour of thin-shell structures based on combined FDEM. The model is implemented into the open source FDEM package “Yfdem”, and is tested on simple benchmark problems.


2010 ◽  
Vol 13 (3) ◽  
pp. 78-87
Author(s):  
Hoai Cong Huynh

The numerical model is developed consisting of a 1D flow model and the morphological model to simulate the erosion due to the water overtopping. The step method is applied to solve the water surface on the slope and the finite difference method of the modified Lax Scheme is applied for bed change equation. The Meyer-Peter and Muller formulae is used to determine the bed load transport rate. The model is calibrated and verified based on the data in experiment. It is found that the computed results and experiment data are good agreement.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Karthie S. ◽  
Zuvairiya Parveen J. ◽  
Yogeshwari D. ◽  
Venkadeshwari E.

Purpose The purpose of this paper is to present the design of a compact microstrip bandpass filter (BPF) in dual-mode configuration loaded with cross-loop and square ring slots on a square patch resonator for C-band applications. Design/methodology/approach In the proposed design, the dual-mode response for the filter is realized with two transmission zeros (TZs) by the insertion of a perturbation element at the diagonal corner of the square patch resonator with orthogonal feed lines. Such TZs at the edges of the passband result in better selectivity for the proposed BPF. Moreover, the cross-loop and square ring slots are etched on a square patch resonator to obtain a miniaturized BPF. Findings The proposed dual-mode microstrip filter fabricated in RT/duroid 6010 substrate using PCB technology has a measured minimum insertion loss of 1.8 dB and return loss better than 24.5 dB with a fractional bandwidth (FBW) of 6.9%. A compact size of 7.35 × 7.35 mm2 is achieved for the slotted patch resonator-based dual-mode BPF at the center frequency of 4.76 GHz. As compared with the conventional square patch resonator, a size reduction of 61% is achieved with the proposed slotted design. The feasibility of the filter design is confirmed by the good agreement between the measured and simulated responses. The performance of the proposed filter structure is compared with other dual-mode filter works. Originality/value In the proposed work, a compact dual-mode BPF is reported with slotted structures. The conventional square patch resonator is deployed with cross-loop and square ring slots to design a dual-mode filter with a square perturbation element at its diagonal corner. The proposed filter exhibits compact size and favorable performance compared to other dual-mode filter works reported in literature. The aforementioned design of the dual-mode BPF at 4.76 GHz is suitable for applications in the lower part of the C-band.


1996 ◽  
Vol 12 (03) ◽  
pp. 167-171
Author(s):  
G. Bezine ◽  
A. Roy ◽  
A. Vinet

A finite-element technique is used to predict the shear stress and normal stress distribution in adherends for polycarbonate/polycarbonate single lap joints subjected to axial loads. Numerical and photoelastic results are compared so that a validation of the numerical model is obtained. The influences on stresses of the overlap length and the shape of the adherends are studied.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saprativ Basu ◽  
Arijit Chakrabarty ◽  
Samik Nag ◽  
Kishore Behera ◽  
Brati Bandyopadhyay ◽  
...  

Purpose The dryer feed chute of the pellet plant plays an important role in the pelletizing process. The chute discharges sticky and moist iron ore fines (<1 mm) to the inline rotary dryer for further processing. Since the inception of the installation of the dryer feed chute, the poor flowability of the feed materials has caused severe problems such as blockages and excessive wear of chute liners. This leads to high maintenance costs and reduced lifetime of the liner materials. Constant housekeeping is needed for maintaining the chute and reliable operation. The purpose of this study is to redesign the dryer feed chute to overcome the above challenges. Design/methodology/approach The discrete element method (DEM) has been used to model the flow of cohesive materials through the transfer chute. Physical experiments have been performed to understand the most severe flow conditions. A DEM material model is also developed for replicating the worst-case material condition. After identifying the key problem areas, concept designs were proposed and simulated to assess the design improvements to increase the reliability of chute operation. Findings Flow simulations correlated well with the existing flow behavior of the iron ore fines inside the chute. The location of the problematic areas has been validated with that of the previously installed chute. Subsequently, design modifications have been proposed. This includes modification of deflector plate and change in slope and cross-section of the chute. DEM simulations and analysis were conducted after incorporating these design changes. A comparison in the average velocity of particle and force on chute wall shows a significant improvement using the proposed design. Originality/value Method to calibrate DEM material model was found to provide accurate prediction and modeling of the flow behavior of bulk material through the real transfer chute. DEM provided greater insight into the performance of the chute especially modeling cohesive materials. DEM is a valuable design tool to assist chute designers troubleshoot and verify chute designs. DEM provides a greater ability to model and assess chute wear. This technique can help in achieving a scientific understanding of the flow properties of bulk solids through transfer chute, hence eliminate challenges, ensuring reliable, uninterrupted and profitable plant operation. This paper strongly advocates the use of calibrated DEM methodology in designing bulk material handling equipment.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Max Huber ◽  
Andreas Zienert ◽  
Perez Weigel ◽  
Martin Schüller ◽  
Hans-Reinhard Berger ◽  
...  

Purpose The purpose of this paper is to analyze and optimize synthetic jet actuators (SJAs) by means of a literature-known one-dimensional analytical model. Design/methodology/approach The model was fit to a wide range of experimental data from in-house built SJAs with different dimensions. A comprehensive parameter study was performed to identify coupling between parameters of the model and to find optimal dimensions of SJAs. Findings The coupling of two important parameters, the diaphragm resonance frequency and the cavity volume, can be described by a power law. Optimal orifice length and diameter can be calculated from cavity height in good agreement with literature. A transient oscillation correction is required to get correct simulation outcomes. Originality/value Based on these findings, SJA devices can be optimized for maximum jet velocity and, therefore, high performance.


2019 ◽  
Vol 15 (2) ◽  
pp. 523-536
Author(s):  
Jinliang Liu ◽  
Yanmin Jia ◽  
Guanhua Zhang ◽  
Jiawei Wang

Purpose The calculation of the crack width is necessary for the design of prestressed concrete (PC) members. The purpose of this paper is to develop a numerical model based on the bond-slip theory to calculate the crack width in PC beams. Design/methodology/approach Stress calculation method for common reinforcement after beam crack has occurred depends on the difference in the bonding performance between prestressed reinforcement and common reinforcement. A numerical calculation model for determining the crack width in PC beams is developed based on the bond-slip theory, and verified using experimental data. The calculation values obtained by the proposed numerical model and code formulas are compared, and the applicability of the numerical model is evaluated. Findings The theoretical analysis and experimental results verified that the crack width of PC members calculated based on the bond-slip theory in this study is reasonable. Furthermore, the stress calculation method for the common reinforcement is verified. Compared with the model calculation results obtained in this study, the results obtained from code formulas are more conservative. Originality/value The numerical calculation model for crack width proposed in this study can be used by engineers as a reference for calculating the crack width in PC beams to ensure the durability of the PC member.


Sign in / Sign up

Export Citation Format

Share Document