Thermal buckling analysis of porous circular plate with piezoelectric actuators based on first order shear deformation theory

2014 ◽  
Vol 83 ◽  
pp. 57-64 ◽  
Author(s):  
M. Jabbari ◽  
E. Farzaneh Joubaneh ◽  
A. Mojahedin
2004 ◽  
Vol 04 (03) ◽  
pp. 313-336 ◽  
Author(s):  
ABDULLATEEF M. AL-KHALEEFI

Based on the first-order shear deformation shell theory, an analytical approach is developed to predict the thermal buckling response of an all-edge clamped cylindrical panel. The analytical approach adopts a double Fourier solution method suitable for cylindrical panels. The present solutions are compared with the finite element solutions obtained using ANSYS. The effects of various dimensional parameters are included in the study.


2012 ◽  
Vol 12 (04) ◽  
pp. 1250030 ◽  
Author(s):  
SHAIKH AKHLAQUE-E-RASUL ◽  
RAJAMOHAN GANESAN

Tapered composite plates have various engineering applications such as helicopter yoke, robot arms and turbine blades in which the structure needs to be stiff at one end and flexible at another end. No closed form analytical solution of tapered composite plates using Ritz method based on first-order shear deformation theory (FSDT) is available at present. In the present paper, the buckling analysis of different types of composite plates with longitudinal-internal-ply-drop-off configuration is investigated using Ritz method. The buckling analysis of these plates is also conducted using ANSYS®. The efficiency and accuracy of the developed formulation are established in comparison with available solutions, where applicable. A detailed parametric study has been conducted on various taper and lay-up configurations, all made of NCT/301 graphite-epoxy, in order to investigate the effects of taper angle, length-to-height ratio, length-to-width ratio, boundary conditions, and taper and lay-up configurations.


Author(s):  
Balram Yadav ◽  
Simant ◽  
Shivendra Kumar Yadav

In the present work thermal buckling of symmetric cross-ply composite laminates is investigated. In this study, a square plate element is employed for the thermal buckling analysis of composite laminated plates. The maximum buckling temperature of symmetric cross-ply laminates under various sides to thickness ratios, aspect ratios, stacking sequence and boundary condition are studied in detail. The maximum buckling temperature analysis of square composite eight and four layered plates under uniform temperature rise is investigated using the classical laminated plate theory & first order shear deformation theory and material properties (Stiffnesses, Poisson’s ratio and Coefficient of thermal expansion) are considered to be temperature dependent. The classical laminated plate theory and first order shear deformation theory in conjunction with the Rayleigh-Ritz method is used for the evaluation of the thermal buckling parameters of structures made out of graphite fibers with an epoxy matrix. The post-buckling response of symmetrically cross-ply laminated composite plates subjected to a combination of uniform temperature distribution through the thickness and in-plane compressive edge loading is presented. The maximum buckling temperature is obtained from the solution. The computing is done by using MATLAB.


Sign in / Sign up

Export Citation Format

Share Document