Thermal buckling of double-layered graphene sheets embedded in an elastic medium with various boundary conditions using a nonlocal new first-order shear deformation theory

2016 ◽  
Vol 97 ◽  
pp. 201-215 ◽  
Author(s):  
Nebojša Radić ◽  
Dejan Jeremić
2004 ◽  
Vol 04 (03) ◽  
pp. 313-336 ◽  
Author(s):  
ABDULLATEEF M. AL-KHALEEFI

Based on the first-order shear deformation shell theory, an analytical approach is developed to predict the thermal buckling response of an all-edge clamped cylindrical panel. The analytical approach adopts a double Fourier solution method suitable for cylindrical panels. The present solutions are compared with the finite element solutions obtained using ANSYS. The effects of various dimensional parameters are included in the study.


2018 ◽  
Vol 14 (1) ◽  
pp. 125-142 ◽  
Author(s):  
Mohammad Malikan

Purpose The purpose of this paper is to predict the mechanical behavior of a piezoelectric nanoplate under shear stability by taking electric voltage into account in thermal environment. Design/methodology/approach Simplified first-order shear deformation theory has been used as a displacement field. Modified couple stress theory has been applied for considering small-size effects. An analytical solution has been taken into account for various boundary conditions. Findings The length scale impact on the results of any boundary conditions increases with an increase in l parameter. The effect of external electric voltage on the critical shear load is more than room temperature effects. With increasing aspect ratio the critical shear load decreases and external electric voltage becomes more impressive. By considering piezoelectric nanoplates, it is proved that the temperature rise cannot become a sensitive factor on the buckling behavior. The length scale parameter has more effect for more flexible boundary conditions than others. By considering nanosize, the consideration has led to much bigger critical load vs macro plate. Originality/value In the current paper for the first time the simplified first-order shear deformation theory is used for obtaining governing equations by using nonlinear strains for shear buckling of a piezoelectric nanoplate. The couple stress theory for the first time is applied on the nonlinear first-order shear deformation theory. For the first time, the thermal environment effects are considered on shear stability of a piezoelectric nanoplate.


Author(s):  
Balram Yadav ◽  
Simant ◽  
Shivendra Kumar Yadav

In the present work thermal buckling of symmetric cross-ply composite laminates is investigated. In this study, a square plate element is employed for the thermal buckling analysis of composite laminated plates. The maximum buckling temperature of symmetric cross-ply laminates under various sides to thickness ratios, aspect ratios, stacking sequence and boundary condition are studied in detail. The maximum buckling temperature analysis of square composite eight and four layered plates under uniform temperature rise is investigated using the classical laminated plate theory & first order shear deformation theory and material properties (Stiffnesses, Poisson’s ratio and Coefficient of thermal expansion) are considered to be temperature dependent. The classical laminated plate theory and first order shear deformation theory in conjunction with the Rayleigh-Ritz method is used for the evaluation of the thermal buckling parameters of structures made out of graphite fibers with an epoxy matrix. The post-buckling response of symmetrically cross-ply laminated composite plates subjected to a combination of uniform temperature distribution through the thickness and in-plane compressive edge loading is presented. The maximum buckling temperature is obtained from the solution. The computing is done by using MATLAB.


2013 ◽  
Vol 10 (2) ◽  
pp. 1 ◽  
Author(s):  
RF Rango ◽  
FJ Bellomo ◽  
LG Nallim

 This paper is concerned with the bending of laminated composite plates with arbitrary lay-up and general boundary conditions. The analysis is based on the small deflection, first-order shear deformation theory of composite plates, which utilizes the Reissner-Mindlin plate theory. In solving the aforementioned plate problems, a general algorithm based on the Ritz method and the use of beam orthogonal polynomials as coordinate functions is derived. This general algorithm provides an analytical approximate solution that can be applied to the static analysis of moderately thick laminated composite plates with any lamination scheme and combination of edge conditions. The convergence, accuracy, and flexibility of the obtained general algorithm are shown by computing several numerical examples and comparing some of them with results given in the literature. Some results, including general laminates and nonsymmetrical boundary conditions with free edges, are also presented. 


Sign in / Sign up

Export Citation Format

Share Document