Analysis and active control of geometrically nonlinear responses of smart FG porous plates with graphene nanoplatelets reinforcement based on Bézier extraction of NURBS

2020 ◽  
Vol 180 ◽  
pp. 105692 ◽  
Author(s):  
Nam V. Nguyen ◽  
Lieu B. Nguyen ◽  
H. Nguyen-Xuan ◽  
Jaehong Lee
Author(s):  
Keivan Asadi ◽  
Snehan Peshin ◽  
Junghoon Yeom ◽  
Hanna Cho

In micro/nanometer scale mechanical resonators, constructive utilization of intentional nonlinearity has suggested ways to leverage beneficial nonlinear characteristics in their design for various applications. Previous studies have also shown that the geometric nonlinearity is effectively implemented and tailored through integration of nonlinear couplings to an otherwise linear microcantilever. Here, we demonstrate experimentally a nonlinear micromechanical resonator consisting of a silicon microcantilever axially constrained by a polymer attachment exhibiting a strong nonlinear hardening behavior not only in its first flexural mode but also in higher modes. A theoretical model representing the system with geometrically nonlinear stiffness and damping is analyzed by the method of multiple scales, which is favorably validated by good agreement with experimentally obtained nonlinear responses.


2021 ◽  
Vol 9 (3B) ◽  
Author(s):  
TALASLIOĞLU Tuğrul ◽  

The nonlinearity issue is one of the promising fields in the engineering area. Particularly, the geometric nonlinearity bears big importance for the structural systems showing a tendency of larger deflection. In order to obtain a correct load-deflection relation for the structural system subjected to any external load, an advanced incremental-iterative based approach has to be utilized in the analysis of nonlinear responses. Arc length method has been proven to be the most perfect one among the nonlinear analysis approaches. Thus, it is extensively applied to the structural systems with pin-connected joints. This study attempts to compare two variations of arc length method named “spherical” and “linearized” for the nonlinear analysis of structural system with rigid-connected joints. Also, two different element formulations are utilized to discretize the structural systems. Two open-source coded programs, Opensees and FEAP, are employed for six benchmark structural systems in order to compare the performance of employed arc-length techniques. Furthermore, in order to make a further observation in the nonlinear behavior of application examples, their simulations are not only sketched using graphs, but also displayed through the movies for each of benchmark tests. Consequently, the linearized type arc length technique implemented in FEAP shows a more success with a better prediction of load-deflection relation, noting that Opensees has a big advantage of having an element, which is capable of simulating the geometric nonlinearity.


Author(s):  
Shravankumar B. Kerur ◽  
Anup Ghosh

A coupled electromechanical finite element formulation for active control of geometrically nonlinear transient response of laminated composite plate is studied. First order shear deformation theory and Von Karman type nonlinear strain displacements are used. The plate is discritised using eight noded quadratic isoparametric elements with five mechanical degrees of freedom and one electrical degree of freedom per node. Newton-Raphson iterative method in association with Newmark time integration method is used to solve the nonlinear finite element equilibrium equation. Negative velocity feedback control algorithm is used to control the dynamic response of the smart laminated composite plate. Active fiber composite (AFC) layer poled in fiber direction acting as distributed actuator and PVDF layer poled in thickness direction acting as sensor are considered. Present study involves two types of actuator sensor arrangements. Case I: the substrate is sandwiched between AFC actuator and PVDF sensor. Case II: AFC actuator and PVDF sensor are collocated on top of the substrate. The effect of piezoelectric fiber orientation in actuator layer on vibration control for both cross ply and angle ply laminates are examined.


Sign in / Sign up

Export Citation Format

Share Document