Impact of initial fiber states on different fiber dynamic patterns in the laminar channel flow

2021 ◽  
Vol 198 ◽  
pp. 106359
Author(s):  
Jingyu Cui ◽  
Yang Liu ◽  
Yuzhen Jin
2020 ◽  
Vol 133 ◽  
pp. 103463
Author(s):  
Deibi E. García ◽  
Daniel Rodríguez ◽  
Angela O. Nieckele ◽  
Igor Braga de Paula

2007 ◽  
Vol 129 (8) ◽  
pp. 1048-1057 ◽  
Author(s):  
Clarisse Fournier ◽  
Marc Michard ◽  
Françoise Bataille

Steady state similarity solutions are computed to determine the temperature profiles in a laminar channel flow driven by uniform fluid injection at one or two porous walls. The temperature boundary conditions are non-symmetric. The numerical solution of the governing equations permit to analyze the influence of the governing parameters, the Reynolds and Péclet numbers. For both geometries, we deduce a scaling law for the boundary layer thickness as a function of the Péclet number. We also compare the numerical solutions with asymptotic expansions in the limit of large Péclet numbers. Finally, for non-symmetric injection, we derive from the computed temperature profile a relationship between the Nusselt and Péclet numbers.


2008 ◽  
Vol 131 (2) ◽  
Author(s):  
Carlos Silva ◽  
Doseo Park ◽  
Egidio (Ed) Marotta ◽  
Leroy (Skip) Fletcher

The effect of the dimple shape and orientation on the heat transfer coefficient of a vertical fin surface was determined both numerically and experimentally. The investigation focused on the laminar channel flow between fins, with a Re=500 and 1000. Numerical simulations were performed using a commercial computational fluid dynamics code to analyze optimum configurations, and then an experimental investigation was conducted on flat and dimpled surfaces for comparison purposes. Numerical results indicated that oval dimples with their “long” axis oriented perpendicular to the direction of the flow offered the best thermal improvement, hence the overall Nusselt number increased up to 10.6% for the dimpled surface. Experimental work confirmed these results with a wall-averaged temperature reduction of up to 3.7K, which depended on the heat load and the Reynolds number. Pressure losses due to the dimple patterning were also briefly explored numerically in this work.


Sign in / Sign up

Export Citation Format

Share Document