Multi-level denoising and enhancement method based on wavelet transform for mine monitoring

2013 ◽  
Vol 23 (1) ◽  
pp. 163-166 ◽  
Author(s):  
Zhao Yanqin

The classical wavelet transform has been widely applied in the information processing field. It implies that quantum wavelet transform (QWT) may play an important role in quantum information processing. This chapter firstly describes the iteration equations of the general QWT using generalized tensor product. Then, Haar QWT (HQWT), Daubechies D4 QWT (DQWT), and their inverse transforms are proposed respectively. Meanwhile, the circuits of the two kinds of multi-level HQWT are designed. What's more, the multi-level DQWT based on the periodization extension is implemented. The complexity analysis shows that the proposed multi-level QWTs on 2n elements can be implemented by O(n3) basic operations. Simulation experiments demonstrate that the proposed QWTs are correct and effective.


2012 ◽  
Vol 198-199 ◽  
pp. 238-243 ◽  
Author(s):  
Wen Sheng Guo ◽  
Feng Chen ◽  
Zhao You Sun ◽  
Xi Jun Wang

The traditional image magnify method usually have some defects on details. This paper gives a new infrared image magnification and enhancement method which is based on wavelet reconstruction and gradation segment. In this method, first of all, make wavelet transform on the image, get the high-frequency coefficient. Apply the Newton differential algorithm enhance the high-frequency coefficient as the high-frequency part of the magnified image, treat the original image as the low-frequency part , make the wavelet reconstruction ,then get the magnified image. To enhance the magnified image, according to the double gray threshold, segment the image into high gray segment corresponding to target, low gray segment corresponding to background, and middle gray segment corresponding to transition sector. Then, make linear extension to them respectively; the result is the magnified image. Experiments indicate, this method is effective on distinguishing high-energy target from low-energy target (the low-energy target is the primary one) and displaying the details of image(edge profile of the bomb).


Sign in / Sign up

Export Citation Format

Share Document