Numerical study of nanoscale and microscale particle transport in realistic lung models with and without stenosis

Author(s):  
Md. M Rahman ◽  
Ming Zhao ◽  
Mohammad S Islam ◽  
Kejun Dong ◽  
Suvash C Saha
2015 ◽  
Vol 773 ◽  
pp. 498-519 ◽  
Author(s):  
A. J. T. M. Mathijssen ◽  
D. O. Pushkin ◽  
J. M. Yeomans

We study tracer particle transport due to flows created by a self-propelled micro-swimmer, such as a swimming bacterium, alga or a microscopic artificial swimmer. Recent theoretical work has shown that as a swimmer moves in the fluid bulk along an infinite straight path, tracer particles far from its path perform closed loops, whereas those close to the swimmer are entrained by its motion. However, in biologically and technologically important cases tracer transport is significantly altered for swimmers that move in a run-and-tumble fashion with a finite persistence length, and/or in the presence of a free surface or a solid boundary. Here we present a systematic analytical and numerical study exploring the resultant regimes and their crossovers. Our focus is on describing qualitative features of the tracer particle transport and developing quantitative tools for its analysis. Our work is a step towards understanding the ecological effects of flows created by swimming organisms, such as enhanced fluid mixing and biofilm formation.


2008 ◽  
Vol 51 (10) ◽  
pp. 1759-1771 ◽  
Author(s):  
HongTao Cai ◽  
ShuYing Ma ◽  
ZuYin Pu

2003 ◽  
Vol 2 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Yunlong Liu ◽  
Alfred Moser ◽  
Kazuyoshi Harimoto

2019 ◽  
Author(s):  
Daniel Orea ◽  
Thien Nguyen ◽  
Rodolfo Vaghetto ◽  
N. K. Anand ◽  
Yassin A. Hassan ◽  
...  

Abstract This paper presents an experimental study of hydrodynamics flow characteristics and particle transport in a test facility. Experimental measurements of fluid flow and particle deposition are studied under isothermal conditions using particle image velocimetry (PIV) and particle tracking velocimetry (PTV) techniques. These non-intrusive optical measurement techniques have been applied in experiment conditions of Reynolds number Re = 5,077 in a 3-inch square channel and 72-inches in total length. The fluid within the channel is air seeded with aerosol droplets while the measurements of particle transport is facilitated using surrogate particles dispersed in the channel flow. Results obtained from the PIV and PTV measurements included the hydrodynamics fluid flow characteristics, and characteristics of particle transports, such as particle velocity, particle diameter distributions and particle concentration profiles. Results from the preliminary test have shown 11.08% deposition of particles. To supplement this experimental work, upstream fluid flow characteristics were provided as boundary conditions for a comparable numerical study.


Author(s):  
Junping Gu ◽  
Qinggong Wang ◽  
Yuxin Wu ◽  
Lele Feng ◽  
Guang Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document