scholarly journals A numerical study on differences in using Navier–Stokes and Reynolds equations for modeling the fluid flow and particle transport in single rock fractures with shear

2008 ◽  
Vol 45 (7) ◽  
pp. 1082-1101 ◽  
Author(s):  
T. Koyama ◽  
I. Neretnieks ◽  
L. Jing
2019 ◽  
Author(s):  
Daniel Orea ◽  
Thien Nguyen ◽  
Rodolfo Vaghetto ◽  
N. K. Anand ◽  
Yassin A. Hassan ◽  
...  

Abstract This paper presents an experimental study of hydrodynamics flow characteristics and particle transport in a test facility. Experimental measurements of fluid flow and particle deposition are studied under isothermal conditions using particle image velocimetry (PIV) and particle tracking velocimetry (PTV) techniques. These non-intrusive optical measurement techniques have been applied in experiment conditions of Reynolds number Re = 5,077 in a 3-inch square channel and 72-inches in total length. The fluid within the channel is air seeded with aerosol droplets while the measurements of particle transport is facilitated using surrogate particles dispersed in the channel flow. Results obtained from the PIV and PTV measurements included the hydrodynamics fluid flow characteristics, and characteristics of particle transports, such as particle velocity, particle diameter distributions and particle concentration profiles. Results from the preliminary test have shown 11.08% deposition of particles. To supplement this experimental work, upstream fluid flow characteristics were provided as boundary conditions for a comparable numerical study.


Author(s):  
Parameswara Rao Nakkina ◽  
Arul Prakash Karaiyan ◽  
Saravana Kumar Gurunathan

Numerical simulation of fluid flow through various configurations like decelerated, free vortex, accelerated and spiral casing with different aspect ratios (AR) based on cross section has been studied using finite element method. An explicit Eulerian velocity correction scheme has been deployed to solve the Reynolds averaged Navier-stokes equations. The simulations have been performed to describe the fluid flow in high Reynolds number (106) regime. A streamline upwind Petrov Galerkin technique has been used for discretising governing equations. The pressure distribution inside the spiral casing has been studied. Total head loss for all configurations with various aspect ratios is modeled using response surface approximation. Subsequently, unconstrained non-linear minimization method is implemented to obtain optimum spiral casing by minimizing the total head loss.


Author(s):  
K-S Yang ◽  
I-Y Chen ◽  
C-C Wang

A numerical study is conducted to examine the flow characteristics of the inkjet printer head with special attention made to the refilling process. By solving the full set of three-dimensional transient Navier-Stokes equations and considering the process of bubble growth and collapse as a movable membrane, the fluid flow inside the channel and the ejected droplet from the nozzle can be modelled. The calculated results indicate that the single refilling channel design provides the fastest refilling rate but also reveals pronounced flow surge/overshot phenomena. By using a double refilling channel design, the flow surge/overshot phenomenon can be reduced considerably owing to the imposed friction. Moreover, the flooding phenomenon is much less pronounced. However, placing an additional cylinder obstacle in the single filling channel will not reduce the flow surge/overshot phenomenon.


2008 ◽  
Vol 12 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Ehsan Mohseni-Languri ◽  
Mofid Gorji-Bandpy ◽  
Reza Masoodi

The two-dimensional fluid flow and heat transfer in a circular tube heat exchanger with two elliptic obstacles at the back is studied numerically. The computational domain consists of a circular tube and two elliptic obstacles that are situated after the tube, such that the angle between their centerlines and the direction of free coming flow is 45 degrees. The numerical solution is achieved by numerical integration of full Navier-Stokes and energy equations over the computational domain, using finite volume method. The fluid flow is assumed to be laminar, incompressible and steady-state with constant thermo-physical characteristics. In this study major thermo-fluid parameters such as temperature, pressure and velocity fields as well as Nusselt number and friction factor variations are computed and some results are presented in the graphs. It is shown that using of elliptic obstacles leads to an increase in the average Nusselt number and also pressure. .


2015 ◽  
Vol 9 (3) ◽  
pp. 242 ◽  
Author(s):  
Efstathios Kaloudis ◽  
Dimitris Siachos ◽  
Konstantinos Stefanos Nikas

Sign in / Sign up

Export Citation Format

Share Document