rock fractures
Recently Published Documents


TOTAL DOCUMENTS

380
(FIVE YEARS 114)

H-INDEX

35
(FIVE YEARS 6)

2022 ◽  
Vol 2148 (1) ◽  
pp. 012048
Author(s):  
Xiufang Wang ◽  
Jingyuan Li ◽  
Ming Bai ◽  
Yan Pei

Abstract Digital image processing technologies are used to extract and evaluate the cracks of heritage rock in this paper. Firstly, the image needs to go through a series of image preprocessing operations such as graying, enhancement, filtering and binaryzation to filter out a large part of the noise. Then, in order to achieve the requirements of accurately extracting the crack area, the image is again divided into the crack area and morphological filtering. After evaluation, the obtained fracture area can provide data support for the restoration and protection of heritage rock. In this paper, the cracks of heritage rock are extracted in three different locations.The results show that the three groups of rock fractures have different effects on the rocks, but they all need to be repaired to maintain the appearance of the heritage rock.


2022 ◽  
Vol 141 ◽  
pp. 104493
Author(s):  
Zhihong Zhao ◽  
Tao Lin ◽  
Yuedu Chen ◽  
Xingguang Zhao ◽  
Liang Chen ◽  
...  

Fractals ◽  
2021 ◽  
Author(s):  
Ye Dayu ◽  
Liu Guannan ◽  
Yu Boming ◽  
Zhou Zongqing ◽  
Gao Chenglu ◽  
...  

2021 ◽  
Author(s):  
Xupeng He ◽  
Marwa Alsinan ◽  
Hyung Kwak ◽  
Hussein Hoteit

Abstract Understanding the fundamental mechanism of fracture-matrix fluid exchange is crucial for the modeling of fractured reservoirs. Traditionally, high-resolution simulations for flow in fractures often neglect the matrix-fracture leakage influence on the fracture hydraulic properties, i.e., assuming impermeable fracture walls. This work introduces a micro-continuum approach to capture the matrix-fracture leakage interaction and its effect on the rock fractures’ hydraulic properties. Because of the multiscale nature of fractured media, full physics Navier-Stokes (NS) representation everywhere in the whole domain is not feasible. We thus employ NS equations to describe the flow in the fracture, and Darcy’s law to model the flow in the surrounding porous rocks. Such hybrid modeling is achieved using the extended Darcy-Brinkman-Stokes (DBS) equation. With this approach, a unified conservation equation for flow in both media is applied by choosing appropriate parameters (e.g., porosity and permeability) for the corresponding domains. We apply an accurate Mixed Finite Element approach to solve the extended DBS equation. Various sensitivity analyses are conducted to explore the leakage effects on the fracture hydraulic properties by varying surrounding matrix permeability, fracture roughness, and Reynolds number (Re). Streamline profiles show the presence of back-flow phenomena, where in-flow and out-flow are possible between the matrix and the fractures. Further, zones of stagnant (eddy) flow are observed around locations with large asperities of sharp corners under high Re conditions. Numerical results show the significant effects of roughness and inertia on flow predictions in fractures for both impermeable and leaky wall cases. Besides, the side-leakage effect can create non-uniform flow behavior within the fracture that may differ significantly from the case with impermeable wall conditions. And this matrix-fracture leakage influence on hydraulic properties of rock fractures matters especially for cases with high matrix permeability, high fracture roughness, and low Re values. In summary, we present a high-resolution micro-continuum approach to explore the flow exchange behavior between the fracture and rock matrix, and further investigate the static and dynamic effects, including variable Reynold numbers, mimicking flow near and away from the wellbore. The approach and results provide significant insights into the flow of fluids through fractures within permeable rocks and can be readily applied in field-scale reservoir simulations.


Author(s):  
Jun Zheng ◽  
Jichao Guo ◽  
Jiongchao Wang ◽  
Honglei Sun ◽  
Jianhui Deng ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Kazuki Sawayama ◽  
Takuya Ishibashi ◽  
Fei Jiang ◽  
Tatsunori Ikeda ◽  
Takeshi Tsuji ◽  
...  

2021 ◽  
Author(s):  
Minglei Zhai ◽  
Haibo Bai

Abstract Rock mass inherently contains discontinuities, and shear sliding of rock masses along discontinuities is the most common failure mode of rock mass in engineering practice (such as slope, dam and tunnel). In this study, the mechanical and failure properties of rock fractures were examined through direct shear tests, pre-peak tiered cyclic shear tests and multistage loading shear creep tests. The results show that the deformable memory of rocks can be observed from shear stress-shear displacement curves, namely reloading curves continued to increase along the loading curve of the last cycle under the pre-peak tiered cyclic shear loading. The envelopes of shear stress-shear displacement curves were similar to the variation trend of shear stress-shear displacement curves obtained in the direct shear test. Besides, the variation trend of residual shear displacement (RSD) and relative residual shear displacement (RRSD) before slip instability were obtained by the data analyses of rock mass under pre-peak tiered cyclic shear tests. It is found that the change in the friction and sliding state of rock fracture is the main reason for the fluctuation of shear stress-shear displacement curves. The Chen's method was used to process the multistage loading shear creep curves and the three creep stages were analyzed. Moreover, the complex creep models in some previous studies were discussed and the data of shear creep tests were successfully fitted to the classical Burgers model. This study provides a guidance for the study on the shear instability of rock fractures under different shear loading paths.


Fuel ◽  
2021 ◽  
pp. 122560
Author(s):  
Bo Zhang ◽  
Ranjith Pathegama Gamage ◽  
Chengpeng Zhang ◽  
Ayal Wanniarachchi

Sign in / Sign up

Export Citation Format

Share Document