scholarly journals Design methodology in transverse webs of the torsional box structure in an ultra large container ship

Author(s):  
Arturo Silva-Campillo ◽  
J.C. Suárez-Bermejo ◽  
M.A. Herreros-Sierra ◽  
M. de Vicente
2012 ◽  
Vol 81 (6) ◽  
pp. 485-488
Author(s):  
Masanobu TOYODA ◽  
Tsunehisa HANDA

2022 ◽  
Vol 243 ◽  
pp. 110335
Author(s):  
Ying Tang ◽  
Shi-Li Sun ◽  
Rui-Song Yang ◽  
Hui-Long Ren ◽  
Xin Zhao ◽  
...  

2016 ◽  
Vol 60 (02) ◽  
pp. 92-100
Author(s):  
Oleg Gaidai ◽  
Gaute Storhaug ◽  
Arvid Naess

The paper describes a method for prediction of large container ship extreme roll angles occurring during sailing in harsh weather. Rolling is coupled with other ship motions and exhibits highly nonlinear behavior. Risk of losing containers due to a large roll is primary concern for ship transport. Because of non-stationarity and complicated nonlinearities of both waves and ship motions, it is a considerable challenge to model such a phenomenon. In case of extreme motions, the role of nonlinearities dramatically increases, activating effects of second and higher order. Moreover, laboratory tests may also be questioned because of the scaling and the sea state choice. Therefore, data measured on actual ships during their voyages in harsh weather provide a unique insight into statistics of ship motions. The aim of this work is to benchmark state of art method, which makes it possible to extract the necessary information about the extreme response from onboard measured time histories. The method proposed in this paper opens up the possibility to predict simply and efficiently both short- and long-term extreme response statistics.


2014 ◽  
Author(s):  
K Ouchi ◽  
◽  
Y Tanaka ◽  
A Taniguchi ◽  
J Takashina ◽  
...  

2020 ◽  
Vol 10 (8) ◽  
pp. 2978
Author(s):  
Ryo Hanada ◽  
Tetsuo Okada ◽  
Yasumi Kawamura ◽  
Tetsuji Miyashita

In this study, as a preliminary attempt to reveal the whipping response of large container ships in actual seaways, the stress monitoring data of an 8600 TEU large container ship were analyzed. The measurement lasted approximately five years, and using a large amount of data, we investigated how the sea state and operational conditions affected the whipping response. In addition, the midship longitudinal stresses were decomposed into hull girder vertical bending, horizontal bending, and torsional and axial components. Thereafter, we found that the whipping magnitude on the torsional and horizontal bending components is much smaller than that on the vertical bending component. Future research would include the analysis of a larger amount of data, analysis of other sensor data, and effects of various patterns of vibrational response on the ultimate strength and fatigue strength. The obtained results will benefit the future design and operation of large container ships for safer navigation.


Author(s):  
Yongwon Lee ◽  
Zhenhong Wang ◽  
Nigel White ◽  
Spyros E. Hirdaris

As part of WILS II (Wave Induced Loads on Ships) Joint Industry Project organised by MOERI (Maritime and Ocean Engineering Research Institute, Korea), Lloyd’s Register has undertaken time domain springing and whipping analyses for a 10,000 TEU class container ship using computational tools developed in the Co-operative Research Ships (CRS) JIP [1]. For idealising the ship and handling the flexible modes of the structure, a boundary element method and a finite element method are employed for coupling fluid and structure domain problems respectively. The hydrodynamic module takes into account nonlinear effects of Froude-Krylov and restoring forces. This Fluid Structure Interaction (FSI) model is also coupled with slamming loads to predict wave loads due to whipping effects. Vibration modes and natural frequencies of the ship hull girder are calculated by idealising the ship structure as a Timoshenko beam. The results from springing and whipping analyses are compared with the results from linear and nonlinear time domain calculations for the rigid body. The results from the computational analyses in regular waves have been correlated with those from model tests undertaken by MOERI. Further the global effects of springing and whipping acting on large container ships are summarised and discussed.


Author(s):  
Young-Bok Kim ◽  
Moo-Hyun Kim ◽  
Yong Yook Kim ◽  
Young-Hun Kim

Recently, there are several problems in space, infra-structure, and facility in the contiguity of existing harbors due to the trend of enlarged container vessels. In this regard, the Mobile Harbor has been proposed conceptually as an effective solution for those problems. This concept is a kind of transfer loader of the containers from the large container ship to the harbor on land, which is a floating barge of a catamaran type. The catamaran-type vessel is well known for its advantage in maneuverability, resistance, and the effectiveness for working on board. For the safe and effective operation of the two floating bodies, a container ship and the mobile harbor in the near sea apart from the quay, robot arms, novel crane systems, and pneumatic fenders are specially devised with additional mooring facility or DP (dynamic positioning) system. The concept is to be verified through comparison and simulation studies under various environmental conditions. It is shown that the proposed concept is in general feasible but there are several areas for further investigation and improvement.


2017 ◽  
Vol 38 (3) ◽  
pp. 63-75 ◽  
Author(s):  
Zheshu Ma ◽  
Hua Chen ◽  
Yong Zhang

Abstract The increase of ship’s energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.


Sign in / Sign up

Export Citation Format

Share Document