Semi-exact solutions for large deflections of cantilever beams of non-linear elastic behaviour

2009 ◽  
Vol 44 (2) ◽  
pp. 253-256 ◽  
Author(s):  
E. Solano-Carrillo
2017 ◽  
Vol 24 (3) ◽  
pp. 543-551 ◽  
Author(s):  
Vladimir Y. Zaitsev ◽  
Andrey V. Radostin ◽  
Elena Pasternak ◽  
Arcady Dyskin

Abstract. Results of examination of experimental data on non-linear elasticity of rocks using experimentally determined pressure dependences of P- and S-wave velocities from various literature sources are presented. Overall, over 90 rock samples are considered. Interpretation of the data is performed using an effective-medium description in which cracks are considered as compliant defects with explicitly introduced shear and normal compliances without specifying a particular crack model with an a priori given ratio of the compliances. Comparison with the experimental data indicated abundance (∼ 80 %) of cracks with the normal-to-shear compliance ratios that significantly exceed the values typical of conventionally used crack models (such as penny-shaped cuts or thin ellipsoidal cracks). Correspondingly, rocks with such cracks demonstrate a strongly decreased Poisson ratio including a significant (∼ 45 %) portion of rocks exhibiting negative Poisson ratios at lower pressures, for which the concentration of not yet closed cracks is maximal. The obtained results indicate the necessity for further development of crack models to account for the revealed numerous examples of cracks with strong domination of normal compliance. Discovering such a significant number of naturally auxetic rocks is in contrast to the conventional viewpoint that occurrence of a negative Poisson ratio is an exotic fact that is mostly discussed for artificial structures.


1993 ◽  
Vol 2 (4) ◽  
pp. 096369359300200
Author(s):  
R-Riesdam Effendi

An experimental study of the fracture of unidirectional carbon fibre-organic matrix composites under compression show that fibre kinking is the principal compressive failure mode. All materials tested have a non linear elastic behaviour during loading. This behaviour can be attributed to the intrinsic non linear elastic behaviour of the fibres.


Sign in / Sign up

Export Citation Format

Share Document