The use of differential and non-local transformations for numerical integration of non-linear blow-up problems

2017 ◽  
Vol 95 ◽  
pp. 178-184 ◽  
Author(s):  
Andrei D. Polyanin ◽  
Inna K. Shingareva
Author(s):  
Vincent Kather ◽  
Finn Lückoff ◽  
Christian O. Paschereit ◽  
Kilian Oberleithner

The generation and turbulent transport of temporal equivalence ratio fluctuations in a swirl combustor are experimentally investigated and compared to a one-dimensional transport model. These fluctuations are generated by acoustic perturbations at the fuel injector and play a crucial role in the feedback loop leading to thermoacoustic instabilities. The focus of this investigation lies on the interplay between fuel fluctuations and coherent vortical structures that are both affected by the acoustic forcing. To this end, optical diagnostics are applied inside the mixing duct and in the combustion chamber, housing a turbulent swirl flame. The flame was acoustically perturbed to obtain phase-averaged spatially resolved flow and equivalence ratio fluctuations, which allow the determination of flux-based local and global mixing transfer functions. Measurements show that the mode-conversion model that predicts the generation of equivalence ratio fluctuations at the injector holds for linear acoustic forcing amplitudes, but it fails for non-linear amplitudes. The global (radially integrated) transport of fuel fluctuations from the injector to the flame is reasonably well approximated by a one-dimensional transport model with an effective diffusivity that accounts for turbulent diffusion and dispersion. This approach however, fails to recover critical details of the mixing transfer function, which is caused by non-local interaction of flow and fuel fluctuations. This effect becomes even more pronounced for non-linear forcing amplitudes where strong coherent fluctuations induce a non-trivial frequency dependence of the mixing process. The mechanisms resolved in this study suggest that non-local interference of fuel fluctuations and coherent flow fluctuations is significant for the transport of global equivalence ratio fluctuations at linear acoustic amplitudes and crucial for non-linear amplitudes. To improve future predictions and facilitate a satisfactory modelling, a non-local, two-dimensional approach is necessary.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Hannes Malcha ◽  
Hermann Nicolai

Abstract Supersymmetric Yang-Mills theories can be characterized by a non-local and non-linear transformation of the bosonic fields (Nicolai map) mapping the interacting functional measure to that of a free theory, such that the Jacobi determinant of the transformation equals the product of the fermionic determinants obtained by integrating out the gauginos and ghosts at least on the gauge hypersurface. While this transformation has been known so far only for the Landau gauge and to third order in the Yang-Mills coupling, we here extend the construction to a large class of (possibly non-linear and non-local) gauges, and exhibit the conditions for all statements to remain valid off the gauge hypersurface. Finally, we present explicit results to second order in the axial gauge and to fourth order in the Landau gauge.


2002 ◽  
Vol 13 (3) ◽  
pp. 337-351 ◽  
Author(s):  
N. I. KAVALLARIS ◽  
C. V. NIKOLOPOULOS ◽  
D. E. TZANETIS

We consider an initial boundary value problem for the non-local equation, ut = uxx+λf(u)/(∫1-1f (u)dx)2, with Robin boundary conditions. It is known that there exists a critical value of the parameter λ, say λ*, such that for λ > λ* there is no stationary solution and the solution u(x, t) blows up globally in finite time t*, while for λ < λ* there exist stationary solutions. We find, for decreasing f and for λ > λ*, upper and lower bounds for t*, by using comparison methods. For f(u) = e−u, we give an asymptotic estimate: t* ∼ tu(λ−λ*)−1/2 for 0 < (λ−λ*) [Lt ] 1, where tu is a constant. A numerical estimate is obtained using a Crank-Nicolson scheme.


Sign in / Sign up

Export Citation Format

Share Document