Analytical solutions for a conical elastic sheet under a live normal load

2019 ◽  
Vol 114 ◽  
pp. 1-8 ◽  
Author(s):  
Jaspreet Singh ◽  
Prashant K. Purohit
2001 ◽  
Vol 4 (2) ◽  
pp. 16 ◽  
Author(s):  
A. K. Al-Hadhrami ◽  
Lionel Elliott ◽  
Derek B. Ingham ◽  
X. Wen

2005 ◽  
Vol 8 (2) ◽  
pp. 125-148 ◽  
Author(s):  
F. G. Avkhadiev ◽  
A. R. Kacimov
Keyword(s):  

1991 ◽  
Vol 19 (3) ◽  
pp. 122-141 ◽  
Author(s):  
C. Wright ◽  
G. L. Pritchett ◽  
R. J. Kuster ◽  
J. D. Avouris

Abstract A method for determining the effect of suspension dynamics on tire wear has been developed. Typical city cycle maneuvers are defined by instrumented vehicle testing and data in the form of forward velocities and steer angles are used as an input to an ADAMS computer model of the vehicle. A simulation of the maneuvers generates a tire's operating environment in the form of normal load, slip, and camber variations, which contain all the subtle effects of the vehicle's suspension, steering, and handling characteristics. A cyclic repetition of the tire's operating environment is constructed and used to control an MTS Flat-Trac machine. In this way, accelerated tire wear can be generated in the laboratory which is directly related to the design features of the vehicle's suspension and steering systems.


1977 ◽  
Vol 5 (2) ◽  
pp. 75-82 ◽  
Author(s):  
A. Schallamach

Abstract Expressions are derived for side force and self-aligning torque of a simple tire model on wet roads with velocity-dependent friction. The results agree qualitatively with experimental results at moderate speeds. In particular, the theory correctly predicts that the self-aligning torque can become negative under easily realizable circumstances. The slip angle at which the torque reverses sign should increase with the normal load.


Sign in / Sign up

Export Citation Format

Share Document