On the feasibility of self-similar solutions of the MHD equations near a magnetic null point

2020 ◽  
Vol 126 ◽  
pp. 103572
Author(s):  
Manuel Núñez
2010 ◽  
Vol 27 (1) ◽  
pp. 019401 ◽  
Author(s):  
Li Shi-You ◽  
Deng Xiao-Hua ◽  
Zhou Meng ◽  
Yuan Zhi-Gang ◽  
Wang Jing-Fang ◽  
...  

2017 ◽  
Vol 844 (2) ◽  
pp. 149 ◽  
Author(s):  
Pankaj Kumar ◽  
Valery M. Nakariakov ◽  
Kyung-Suk Cho

2021 ◽  
Vol 923 (2) ◽  
pp. 163
Author(s):  
Ross Pallister ◽  
Peter F. Wyper ◽  
David I. Pontin ◽  
C. Richard DeVore ◽  
Federica Chiti

Abstract Magnetic reconnection is widely accepted to be a major contributor to nonthermal particle acceleration in the solar atmosphere. In this paper we investigate particle acceleration during the impulsive phase of a coronal jet, which involves bursty reconnection at a magnetic null point. A test-particle approach is employed, using electromagnetic fields from a magnetohydrodynamic simulation of such a jet. Protons and electrons are found to be accelerated nonthermally both downwards toward the domain’s lower boundary and the solar photosphere, and outwards along the axis of the coronal jet and into the heliosphere. A key finding is that a circular ribbon of particle deposition on the photosphere is predicted, with the protons and electrons concentrated in different parts of the ribbon. Furthermore, the outgoing protons and electrons form two spatially separated beams parallel to the axis of the jet, signatures that may be observable in in-situ observations of the heliosphere.


2021 ◽  
Vol 922 (2) ◽  
pp. 123
Author(s):  
S. Sabri ◽  
H. Ebadi ◽  
S. Poedts

Abstract The behavior of current density accumulation around the sharp gradient of magnetic field structure or a 3D magnetic null point and with the presence of finite plasma pressure is investigated. It has to be stated that in this setup, the fan plane locates at the xy plane and the spine axis aligns along the z-axis. Current density generation in presence of the plasma pressure that acts as a barrier for developing current density is less well understood. The shock-capturing Godunov-type PLUTO code is used to solve the magnetohydrodynamic set of equations in the context of wave-plasma energy transfer. It is shown that propagation of Alfvén waves in the vicinity of a 3D magnetic null point leads to current density excitations along the spine axis and also around the magnetic null point. Besides, it is pointed out the x component of current density has oscillatory behavior while the y and z components do not show this property. It is plausible that it happens because the fan plane encompasses separating unique topological regions, while the spine axis does not have this characteristic and is just a line without separate topological regions. Besides, current density generation results in plasma flow. It is found that the y component of the current density defines the x component of the plasma flow behavior, and the x component of the current density prescribes the behavior of the y component of the plasma flow.


2019 ◽  
Vol 492 (2) ◽  
pp. 1770-1777
Author(s):  
Maryam Ghasemnezhad

ABSTRACT To study the role of Hall effect on the structure of accretion disc, we have considered a toroidal magnetic field in our paper. To study the vertical structure of the disc, we have written a set of magnetohydrodynamic (MHD) equations in the spherical coordinates (r, θ, ϕ) based on the two assumptions of axisymmetric and steady state. Also, we employed the self-similar solutions in the radial direction to obtain the structure of the disc in the θ-direction. We have solved a set of ordinary differential equations in the θ-coordinate with symmetrical boundary conditions in the equatorial plane. In order to describe the behaviour of Hall effect, we introduced the ΛH parameter that was called the dimensionless Hall Elsasser number. The strength of the Hall effect is measured by the inverse of dimensionless Hall Elsasser number. We have shown that the strong Hall effect decreases the accretion rate or infall velocity and size of inflow part. It has also been found the Hall effect is maximum in the equatorial plane and gets the value close to zero near the boundary, and it has the antidiffusive nature. The results display that the strong Hall effect makes the standard accretion sub-Keplerian disc becomes thinner. Our solutions have shown the Hall effect leads to transport magnetic flux outward in the upper layer of the disc and it produces outflows in the surface of the disc.


Solar Physics ◽  
2016 ◽  
Vol 291 (11) ◽  
pp. 3207-3216 ◽  
Author(s):  
V. Smirnova ◽  
P. M. Konkol ◽  
A. A. Solov’ev ◽  
K. Murawski

2020 ◽  
Vol 903 (2) ◽  
pp. 129
Author(s):  
Avijeet Prasad ◽  
Karin Dissauer ◽  
Qiang Hu ◽  
R. Bhattacharyya ◽  
Astrid M. Veronig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document