The importance of Hall effect on the magnetized thin accretion disc

2019 ◽  
Vol 492 (2) ◽  
pp. 1770-1777
Author(s):  
Maryam Ghasemnezhad

ABSTRACT To study the role of Hall effect on the structure of accretion disc, we have considered a toroidal magnetic field in our paper. To study the vertical structure of the disc, we have written a set of magnetohydrodynamic (MHD) equations in the spherical coordinates (r, θ, ϕ) based on the two assumptions of axisymmetric and steady state. Also, we employed the self-similar solutions in the radial direction to obtain the structure of the disc in the θ-direction. We have solved a set of ordinary differential equations in the θ-coordinate with symmetrical boundary conditions in the equatorial plane. In order to describe the behaviour of Hall effect, we introduced the ΛH parameter that was called the dimensionless Hall Elsasser number. The strength of the Hall effect is measured by the inverse of dimensionless Hall Elsasser number. We have shown that the strong Hall effect decreases the accretion rate or infall velocity and size of inflow part. It has also been found the Hall effect is maximum in the equatorial plane and gets the value close to zero near the boundary, and it has the antidiffusive nature. The results display that the strong Hall effect makes the standard accretion sub-Keplerian disc becomes thinner. Our solutions have shown the Hall effect leads to transport magnetic flux outward in the upper layer of the disc and it produces outflows in the surface of the disc.

2010 ◽  
Vol 19 (03) ◽  
pp. 339-365 ◽  
Author(s):  
S. V. BOGOVALOV ◽  
S. R. KELNER

We consider the specific case of disc accretion for negligibly low viscosity and infinitely high electric conductivity. The key component in this model is the outflowing magnetized wind from the accretion disc, since this wind effectively carries away angular momentum of the accreting matter. Assuming magnetic field has variable polarity in the disc (to avoid magnetic flux and energy accumulation at the gravitational center), this leads to radiatively inefficient accretion of the disc matter onto the gravitational center. In such a case, the wind forms an outflow, which carries away all the energy and angular momentum of the accreted matter. Interestingly, in this framework, the basic properties of the outflow (as well as angular momentum and energy flux per particle in the outflow) do not depend on the structure of accretion disc. The self-similar solutions obtained prove the existence of such an accreting regime. In the self-similar case, the disc accretion rate (Ṁ) depends on the distance to the gravitational center, r, as [Formula: see text], where λ is the dimensionless Alfvenic radius. Thus, the outflow predominantly occurs from the very central part of the disc provided that λ ≫ 1 (it follows from the conservation of matter). The accretion/outflow mechanism provides transformation of the gravitational energy from the accreted matter into the energy of the outflowing wind with efficiency close to 100%. The flow velocity can essentially exceed the Kepler velocity at the site of the wind launch.


2019 ◽  
Vol 487 (4) ◽  
pp. 4965-4984 ◽  
Author(s):  
J J Zanazzi ◽  
Dong Lai

ABSTRACT After the tidal disruption event (TDE) of a star around a supermassive black hole (SMBH), the bound stellar debris rapidly forms an accretion disc. If the accretion disc is not aligned with the spinning SMBH’s equatorial plane, the disc will be driven into Lense–Thirring precession around the SMBH’s spin axis, possibly affecting the TDE’s light curve. We carry out an eigenmode analysis of such a disc to understand how the disc’s warp structure, precession, and inclination evolution are influenced by the disc’s and SMBH’s properties. We find an oscillatory warp may develop as a result of strong non-Keplarian motion near the SMBH. The global disc precession frequency matches the Lense–Thirring precession frequency of a rigid disc around a spinning black hole within a factor of a few when the disc’s accretion rate is high, but deviates significantly at low accretion rates. Viscosity aligns the disc with the SMBH’s equatorial plane over time-scales of days to years, depending on the disc’s accretion rate, viscosity, and SMBH’s mass. We also examine the effect of fallback material on the warp evolution of TDE discs, and find that the fallback torque aligns the TDE disc with the SMBH’s equatorial plane in a few to tens of days for the parameter space investigated. Our results place constraints on models of TDE emission which rely on the changing disc orientation with respect to the line of sight to explain observations.


2022 ◽  
Vol 54 (1) ◽  
pp. 27-56
Author(s):  
Zhong Zheng ◽  
Howard A. Stone

Thin film flows, whether driven by gravity, surface tension, or the relaxation of elastic boundaries, occur in many natural and industrial processes. Applications span problems of oil and gas transport in channels to hydraulic fracture, subsurface propagation of pollutants, storage of supercritical CO2 in porous formations, and flow in elastic Hele–Shaw configurations and their relatives. We review the influence of boundaries on the dynamics of thin film flows, with a focus on gravity currents, including the effects of drainage into the substrate, and the role of the boundaries to confine the flow, force its convergence to a focus, or deform, and thus feedback to alter the flow. In particular, we highlight reduced-order models. In many cases, self-similar solutions can be determined and describe the behaviors in canonical problems at different timescales and length scales, including self-similar solutions of both the first and second kind. Additionally, the time transitions between different solutions are summarized. Where possible, remarks about various applications are provided.


2005 ◽  
Vol 14 (01) ◽  
pp. 73-84 ◽  
Author(s):  
M. SHARIF ◽  
SEHAR AZIZ

In this paper, we are exploring some of the properties of the self-similar solutions of the first kind. In particular, we shall discuss the kinematic properties and also check the singularities of these solutions. We discuss these properties both in co-moving and also in non-co-moving (only in the radial direction) coordinates. Some interesting features of these solutions turn up.


2005 ◽  
Vol 20 (32) ◽  
pp. 7579-7591 ◽  
Author(s):  
M. SHARIF ◽  
SEHAR AZIZ

This paper is devoted to discuss some of the features of self-similar solutions of the first kind. We consider the cylindrically symmetric solutions with different homotheties. We are interested in evaluating the quantities acceleration, rotation, expansion, shear, shear invariant and expansion rate. These kinematical quantities are discussed both in comoving as well as in noncomoving coordinates (only in radial direction). Finally, we would discuss the singularity feature of these solutions. It is expected that these properties would help in exploring some interesting features of the self-similar solutions.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 394
Author(s):  
Alexander B. Kukushkin ◽  
Andrei A. Kulichenko ◽  
Vladislav S. Neverov ◽  
Petr A. Sdvizhenskii ◽  
Alexander V. Sokolov ◽  
...  

Radiative transfer (RT) in spectral lines in plasmas and gases under complete redistribution of the photon frequency in the emission-absorption act is known as a superdiffusion transport characterized by the irreducibility of the integral (in the space coordinates) equation for the atomic excitation density to a diffusion-type differential equation. The dominant role of distant rare flights (Lévy flights, introduced by Mandelbrot for trajectories generated by the Lévy stable distribution) is well known and is used to construct approximate analytic solutions in the theory of stationary RT (the escape probability method is the best example). In the theory of nonstationary RT, progress based on similar principles has been made recently. This includes approximate self-similar solutions for the Green’s function (i) at an infinite velocity of carriers (no retardation effects) to cover the Biberman–Holstein equation for various spectral line shapes; (ii) for a finite fixed velocity of carriers to cover a wide class of superdiffusion equations dominated by Lévy walks with rests; (iii) verification of the accuracy of above solutions by comparison with direct numerical solutions obtained using distributed computing. The article provides an overview of the above results with an emphasis on the role of distant rare flights in the discovery of nonstationary self-similar solutions.


2009 ◽  
Vol 5 (H15) ◽  
pp. 436-437
Author(s):  
Daniel O. Gómez ◽  
Pablo D. Mininni ◽  
Pablo Dmitruk

AbstractMuch of the progress in our understanding of dynamo mechanisms, has been made within the theoretical framework of magnetohydrodynamics (MHD). However, for sufficiently diffuse media, the Hall effect eventually becomes non-negligible. We present results from three dimensional simulations of the Hall-MHD equations subjected to random non-helical forcing. We study the role of the Hall effect in the dynamo efficiency for different values of the Hall parameter, using a pseudospectral code to achieve exponentially fast convergence.


Author(s):  
M. Shaghaghian

Abstract In this paper, we present the stationary axisymmetric configuration of a resistive magnetised thick accretion disc in the vicinity of external gravity and intrinsic dipolar magnetic field of a slowly rotating black hole. The plasma is described by the equations of fully general relativistic magnetohydrodynamics (MHD) along with the Ohm’s law and in the absence of the effects of radiation fields. We try to solve these two-dimensional MHD equations analytically as much as possible. However, we sometimes inevitably refer to numerical methods as well. To fully understand the relativistic geometrically thick accretion disc structure, we consider all three components of the fluid velocity to be non-zero. This implies that the magnetofluid can flow in all three directions surrounding the central black hole. As we get radially closer to the hole, the fluid flows faster in all those directions. However, as we move towards the equator along the meridional direction, the radial inflow becomes stronger from both the speed and the mass accretion rate points of view. Nonetheless, the vertical (meridional) speed and the rotation of the plasma disc become slower in that direction. Due to the presence of pressure gradient forces, a sub-Keplerian angular momentum distribution throughout the thick disc is expected as well. To get a concise analytical form of the rate of accretion, we assume that the radial dependency of radial and meridional fluid velocities is the same. This simplifying assumption leads to radial independency of mass accretion rate. The motion of the accreting plasma produces an azimuthal current whose strength is specified based on the strength of the external dipolar magnetic field. This current generates a poloidal magnetic field in the disc which is continuous across the disc boundary surface due to the presence of the finite resistivity for the plasma. The gas in the disc is vertically supported not only by the gas pressure but also by the magnetic pressure.


Sign in / Sign up

Export Citation Format

Share Document