Reconstruction of craniofacial bone defects with three-dimensional custom-made implants. A five year experience

2009 ◽  
Vol 38 (5) ◽  
pp. 500 ◽  
Author(s):  
H. Rotaru ◽  
G. Bǎciuţ ◽  
H. Stan ◽  
R. Schumacher ◽  
H.F. Zeilhofer ◽  
...  
2019 ◽  
Vol 25 (2) ◽  
pp. 9-18 ◽  
Author(s):  
A. A. Cherny ◽  
A. N. Kovalenko ◽  
S. S. Bilyk ◽  
A. O. Denisov ◽  
A. V. Kazemirskiy ◽  
...  

The aim of this study was the assessment of early outcomes of patient-specific three-dimensional titanium cones with specified porosity parameters to compensate for extensive metaphysical-diaphyseal bone defects in RTKA.Materials and Methods. Since 2017 till 2019 30 patient-specific titanium cones (12 femoral and 18 tibial) implanted during 26 RTKAS. Clinical outcomes evaluated using KSS, WOMAC and fjS-12 scoring systems on average 10 (2–18) months after surgery. At the same time the stability of implant fixation analyzed using frontal, lateral and axial knee roentgenograms.Results. During all procedures there were no technical difficulties in positioning and implantation of custom-made titanium cones. At the time of preparation of the publication, none of the patients had indications for further surgical intervention, as well as intra- and postoperative complications. Six months after surgery all scores improved significantly: KSS from 23 (2–42, SD 19.96) to 66.5 (62–78, SD 7.68), WOMAC from 59 (56–96, SD 28.31) to 32.25 (19–46, SD 11.76), the index FJS-12 was 29.16 points (0–68.75, SD 30.19). The average scores continued to improve up to 18 months: KSS — 97.5 (88–108, SD 9.14), WOMAC — 16.5 (9–24, SD 6.45), FJS-12 — 45.85 (25–75, SD 22.03). No radiolucent lines were noticed during this period of observation.Conclusion. The original additive technology of designing and producing patient-specific titanium cones for compensation of extensive metaphyseal-diaphyseal bone defects in RTKA is a valid solution at least in the short term. A longer follow-up period is required to assess its medium-and long-term reliability compared to existing alternative surgical solutions.


2013 ◽  
Vol 41 (5) ◽  
pp. 403-407 ◽  
Author(s):  
Joël Brie ◽  
Thierry Chartier ◽  
Christophe Chaput ◽  
Cyrille Delage ◽  
Benjamin Pradeau ◽  
...  

2021 ◽  
Vol 26 (3) ◽  
pp. 404-410
Author(s):  
Taoran Jiang ◽  
Zheyuan Yu ◽  
Jie Yuan ◽  
Liang Xu ◽  
Huichuang Duan ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
André Luis Fernandes da Silva ◽  
Alexandre Meireles Borba ◽  
Niverso Rodrigues Simão ◽  
Fábio Luis Miranda Pedro ◽  
Alvaro Henrique Borges ◽  
...  

Craniofacial defects represent alterations in the anatomy and morphology of the cranial vault and the facial bones that potentially affect an individual’s psychological and social well-being. Although a variety of techniques and restorative procedures have been described for the reconstruction of the affected area, polymethyl methacrylate (PMMA), a biocompatible and nondegradable acrylic resin-based implant, is the most widely used alloplastic material for such craniomaxillofacial reconstruction. The aim of this study was to describe a technique for aesthetic and functional preoperative customized reconstruction of craniofacial bone defects from a small series of patients offered by the Brazilian public health system. Three adult male patients attended consultation with chief complaints directly related to their individual craniofacial bone defects. With the aid of multislice computed tomography scans and subsequent fabrication of the three-dimensional craniofacial prototype, custom-made PMMA implants were fabricated preoperatively. Under general anesthesia, with access to the craniofacial defects with a coronal approach, the PMMA implants were adapted and fixated to the facial skeleton with titanium plates and screws. Postoperative evaluation demonstrated uneventful recovery and an excellent aesthetic result. Customized prefabricated PMMA implants manufactured over the rapid prototyping models proved to be effective and feasible.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Noboru Matsumura ◽  
Kazuya Kaneda ◽  
Satoshi Oki ◽  
Hiroo Kimura ◽  
Taku Suzuki ◽  
...  

Abstract Background Significant bone defects are associated with poor clinical results after surgical stabilization in cases of glenohumeral instability. Although multiple factors are thought to adversely affect enlargement of bipolar bone loss and increased shoulder instability, these factors have not been sufficiently evaluated. The purpose of this study was to identify the factors related to greater bone defects and a higher number of instability episodes in patients with glenohumeral instability. Methods A total of 120 consecutive patients with symptomatic unilateral instability of the glenohumeral joint were retrospectively reviewed. Three-dimensional surface-rendered/registered models of bilateral glenoids and proximal humeri from computed tomography data were matched by software, and the volumes of bone defects identified in the glenoid and humeral head were assessed. After relationships between objective variables and explanatory variables were evaluated using bivariate analyses, factors related to large bone defects in the glenoid and humeral head and a high number of total instability episodes and self-irreducible dislocations greater than the respective 75th percentiles were evaluated using logistic regression analyses with significant variables on bivariate analyses. Results Larger humeral head defects (P < .001) and a higher number of total instability episodes (P = .032) were found to be factors related to large glenoid defects. On the other hand, male sex (P = .014), larger glenoid defects (P = .015), and larger number of self-irreducible dislocations (P = .027) were related to large humeral head bone defects. An increased number of total instability episodes was related to longer symptom duration (P = .001) and larger glenoid defects (P = .002), and an increased number of self-irreducible dislocations was related to larger humeral head defects (P = .007). Conclusions Whereas this study showed that bipolar lesions affect the amount of bone defects reciprocally, factors related to greater bone defects differed between the glenoid and the humeral head. Glenoid defects were related to the number of total instability episodes, whereas humeral head defects were related to the number of self-irreducible dislocations.


2021 ◽  
pp. 112067212110000
Author(s):  
Annabel LW Groot ◽  
Jelmer S Remmers ◽  
Roel JHM Kloos ◽  
Peerooz Saeed ◽  
Dyonne T Hartong

Purpose: Recurrent contracted sockets are complex situations where previous surgeries have failed, disabling the wear of an ocular prosthesis. A combined method of surgery and long-term fixation using custom-made, three-dimensional (3D) printed conformers is evaluated. Methods: Retrospective case series of nine patients with recurrent excessive socket contraction and inability to wear a prosthesis, caused by chemical burns ( n = 3), fireworks ( n = 3), trauma ( n = 2) and enucleation and radiotherapy at childhood due to optic nerve glioma ( n = 1) with three average previous socket surgeries (range 2–6). Treatment consisted of a buccal mucosal graft and personalized 3D-printed conformer designed to be fixated to the periosteum and tarsal plates for minimal 2 months. Primary outcome was the retention of an ocular prosthesis. Secondary outcome was the need for additional surgeries. Results: Outcomes were measured at final follow-up between 7 and 36 months postoperatively (mean 20 months). Eight cases were able to wear an ocular prosthesis after 2 months. Three cases initially treated for only the upper or only the lower fornix needed subsequent surgery for the opposite fornix for functional reasons. Two cases had later surgery for cosmetic improvement of upper eyelid position. Despite pre-existing lid abnormalities (scar, entropion, lash deficiency), cosmetic outcome was judged highly acceptable in six cases because of symmetric contour and volume, and reasonably acceptable in the remaining two. Conclusions: Buccal mucosal transplant fixated with a personalized 3D-designed conformer enables retention of a well-fitted ocular prosthesis in previously failed socket surgeries. Initial treatment of both upper and lower fornices is recommended to avoid subsequent surgeries for functional reasons.


1999 ◽  
Author(s):  
Seok Chung ◽  
Jun Keun Chang ◽  
Dong Chul Han

Abstract To make some MF.MS devices such as sensors and actuators be useful in the medical application, it is required to integrate this devices with power or sensor lines and to keep the hole devices biocompatible. Integrating micro machined sensors and actuators with conventional copper lines is incompatible because the thin copper lines are not easy to handle in the mass production. To achieve the compatibility of wiring method between MEMS devices, we developed the thin metal film deposition process that coats micropattered thin copper films on the non silicon-wafer substrate. The process was developed with the custom-made three-dimensional thin film sputter/evaporation system. The system consists of process chamber, two branch chambers, substrate holder unit and linear/rotary motion feedthrough. Thin metal film was deposited on the biocompatible polymer, polyurethane (PellethaneR) and silicone, catheter that is 2 mm in diameter and 1,000 mm in length. We deposited Cr/Cu and Ti/Cu layer and made a comparative study of the deposition processes, sputtering and evaporation. The temperature of both the processes were maintained below 100°C, for the catheter not melting during the processes. To use the films as signal lines connect the signal source to the actuator on the catheter tip, we machined the films into desired patterns with the eximer laser. In this paper, we developed the thin metal film deposition system and processes for the biopolymeric substrate used in the medical MEMS devices.


Sign in / Sign up

Export Citation Format

Share Document