The scaling of dose with host body mass and the determinants of success in experimental cercarial infections

2010 ◽  
Vol 40 (3) ◽  
pp. 371-377 ◽  
Author(s):  
Robert Poulin
Keyword(s):  
2017 ◽  
Vol 149 (4) ◽  
pp. 473-481 ◽  
Author(s):  
Terry D. Galloway ◽  
Robert J. Lamb

AbstractSpecimens of five species of woodpeckers (Piciformes: Picidae) from Manitoba, Canada, were weighed and examined for chewing lice, 1998–2015: downy woodpecker (Picoides pubescens (Linnaeus), n=49), hairy woodpecker (Picoides villosus (Linnaeus), n=23), pileated woodpecker (Dryocopus pileatus (Linnaeus), n=10), northern flicker (Colaptes auratus (Linnaeus), n=170), and yellow-bellied sapsucker (Sphyrapicus varius (Linnaeus), n=239). The relationship between body mass of each host species and infestation by seven species of lice was analysed: Menacanthus pici (Denny) from all host species, Brueelia straminea (Denny) from Picoides Lacépède species, Penenirmus jungens (Kellogg) from northern flicker, Penenirmus auritus (Scopoli) from the other four hosts, Picicola porisma Dalgleish from northern flicker, Picicola snodgrassi (Kellogg) from Picoides species, and Picicola marginatulus (Harrison) from pileated woodpeckers. Mean abundance of lice increased with the mean mass of their host. Neither the species richness of lice nor the prevalence of lice were related to host body mass. Host body mass explained 98% of the variation in mean intensity of louse infestation among hosts. The positive association of mean intensity and body size was also detected for three genera of lice. Louse intensity also increased with body size for individual birds, more so for some species of lice and hosts than others. Body size matters, but the adaptations that allow higher mean intensity on larger host species remain to be determined.


2019 ◽  
Vol 151 (5) ◽  
pp. 621-628 ◽  
Author(s):  
Robert J. Lamb ◽  
Terry D. Galloway

AbstractSpecimens (n = 508) of eight species of owl (Aves: Strigiformes) collected from 1994 to 2017 in Manitoba, Canada, were weighed and examined for chewing lice (Phthiraptera: Amblycera, Ischnocera). The relationship between host body mass and infestation by 12 species of lice was examined. Host body mass explained 52% (P = 0.03) of the variation in mean intensity of louse infestation among hosts, due primarily to a high abundance of lice on the heaviest owl species. The relationship was due to the mean intensity of lice, and neither species richness nor the prevalence of lice was related to host body mass. For individual louse species, the relationship was due primarily to Kurodaia acadicae Price and Beer, Kurodaia magna Emerson, and an undetermined species of Kurodaia Uchida (Phthiraptera: Menoponidae) (R2 = 0.997), but not the nine Strigiphilus Mjöberg (Phthiraptera: Philopteridae) species (R2 = 0.27). Louse intensity did not increase with body size for individual birds of any of the owl species. Mean intensity is expected to increase in proportion with the size, specifically the surface area, of the host. Why that relationship holds only for one louse genus, and not for the most abundant genus of lice on owls, and weakly compared with other families of birds, has yet to be determined.


Parasitology ◽  
2006 ◽  
Vol 133 (01) ◽  
pp. 81 ◽  
Author(s):  
B. R. KRASNOV ◽  
S. MORAND ◽  
D. MOUILLOT ◽  
G. I. SHENBROT ◽  
I. S. KHOKHLOVA ◽  
...  

2014 ◽  
Vol 11 (93) ◽  
pp. 20131108 ◽  
Author(s):  
Guilhem Rascalou ◽  
Sébastien Gourbière

Adaptive speciation has been much debated in recent years, with a strong emphasis on how competition can lead to the diversification of ecological and sexual traits. Surprisingly, little attention has been paid to this evolutionary process to explain intrahost diversification of parasites. We expanded the theory of competitive speciation to look at the effect of key features of the parasite lifestyle, namely fragmentation, aggregation and virulence, on the conditions and rate of sympatric speciation under the standard ‘pleiotropic scenario’. The conditions for competitive speciation were found similar to those for non-parasite species, but not the rate of diversification. Adaptive evolution proceeds faster in highly fragmented parasite populations and for weakly aggregated and virulent parasites. Combining these theoretical results with standard empirical allometric relationships, we showed that parasite diversification can be faster in host species of intermediate body mass. The increase in parasite load with body mass, indeed, fuels evolution by increasing mutants production, but because of the deleterious effect of virulence, it simultaneously weakens selection for resource specialization. Those two antagonistic effects lead to optimal parasite burden and host body mass for diversification. Data on the diversity of fishes' gills parasites were found consistent with the existence of such optimum.


2007 ◽  
Vol 16 (4) ◽  
pp. 496-509 ◽  
Author(s):  
Patrik Lindenfors ◽  
Charles L. Nunn ◽  
Kate E. Jones ◽  
Andrew A. Cunningham ◽  
Wes Sechrest ◽  
...  

2007 ◽  
Vol 37 (3-4) ◽  
pp. 359-364 ◽  
Author(s):  
Robert Poulin ◽  
Mario George-Nascimento
Keyword(s):  

Parasitology ◽  
2016 ◽  
Vol 144 (4) ◽  
pp. 475-483 ◽  
Author(s):  
J. SPONCHIADO ◽  
G. L. MELO ◽  
T. F. MARTINS ◽  
F. S. KRAWCZAK ◽  
F. C. JACINAVICIUS ◽  
...  

SUMMARYThis study aimed to assess the contribution of hosts characteristics (rodents and marsupials) in the organization of ectoparasite communities present in woodland patches in western central Brazil. We verified the effect of host species, sex, body mass and vertical strata in addition to the role of seasonality on the ectoparasite composition, richness and abundance. The total sampling effort was 22 032 trap-nights equally distributed in 54 woodland patches. Variance partition and principal coordinate analysis were used to verify the existence of significant relationships between response variables and predictors. As expected, host species was the most important variable in ectoparasite community assembly. The composition, richness and abundance of mites and lice were highly influenced by host species, although higher for mites than for lice. Host body mass had a determining role on the richness and abundance of tick species. Vertical stratification and seasonality had weak influence, while the sex of the host had no influence on the organization of these communities. The results are closely related to the evolutionary characteristics of the species involved, as well as with local environmental characteristics of the study area.


Parasitology ◽  
2009 ◽  
Vol 137 (5) ◽  
pp. 889-898 ◽  
Author(s):  
R. POULIN

SUMMARYExperimental studies of parasite transmission are essential for advances in basic and applied parasitology. A survey of the results of published experiments can identify the determinants of both variation among studies in experimental design and of parasite infection success. Here, analyses are conducted on data compiled from a total of 106 metacercarial infection experiments (35 on Echinostomatidae, 37 on Fasciolidae, 34 on other trematodes) obtained from 83 studies. All of these involved experimental oral infection of individual definitive hosts by a single known dose of metacercariae under controlled conditions. Across these studies, the metacercarial dose used (i) was typically about 10 times higher than the average natural dose that could be acquired by feeding on intermediate hosts (for taxa other than Fasciolidae), and (ii) showed a positive relationship with the body mass of the definitive host, although this relationship was only significant for Fasciolidae. Although the chosen dose was rarely justified, the larger the definitive host, the more metacercariae it received. Among Echinostomatidae and Fasciolidae, there was also a significant dose-dependent effect on infection success: the higher the dose used in an experiment, the smaller the proportion of metacercariae recovered from the host. This effect was mitigated by definitive host body mass, with infection success being generally lower in larger definitive hosts. For Echinostomatidae, the taxonomic identity of the definitive host also mattered, with metacercariae achieving higher infection success in mammals than in birds. The present findings suggest that the design of experimental infection studies requires greater consideration if their results are to yield useful biological insights.


Sign in / Sign up

Export Citation Format

Share Document