Optimal production and rationing policy of two-stage tandem production system

2017 ◽  
Vol 185 ◽  
pp. 100-112 ◽  
Author(s):  
Jianjun Xu ◽  
Alejandro Serrano ◽  
Bing Lin
2021 ◽  
Vol 11 (3) ◽  
pp. 1088
Author(s):  
Ten-Suz Chen ◽  
Yung-Fu Huang ◽  
Ming-Wei Weng ◽  
Manh-Hoang Do

Corporate social responsibility (CSR) has witnessed remarkable attention in academic studies as well as being widely conducted in different industries globally. This specific case was chosen as one of the biggest dairy companies that may be represented for Vietnam dairy supply chain management. This research aims to integrate CSR initiatives into food supply chain management to clarify the optimal replenishment policy, paying close attention to the relationship between midstream manufacturers and final customers. The classical economic production quantity model has been employed, relying on the two-stage assembly production system. The three parameters that contribute to the total profit formulation that have been considered consist of the social charity amount for per unit selling, the unit wholesale price of the manufacturer, and the return rate of used goods from the customer. The study has stressed that there is a significant impact from implementing CSR initiatives on the enterprise’s inventory policy that leads to enhance the firm’s financial performance.


Author(s):  
Abdelhak Mezghiche ◽  
Mustapha Moulaï ◽  
Lotfi Tadj

The authors consider in this paper an integrated forecasting production system of the tracking type. The demand rate during a certain period depends on the demand rate of the previous period. Also, the demand rate depends on the inventory level. Items on the shelves are subject to deterioration. Using a model predictive control approach, the authors obtain the optimal production rate, the optimal inventory level, the optimal demand rate, and the optimal objective function value, explicitly in terms of the system parameters. A numerical example is presented.


2020 ◽  
Vol 12 (6) ◽  
pp. 2426
Author(s):  
Shouyao Xiong ◽  
Yuanyuan Feng ◽  
Kai Huang

This paper studies the optimal production planning in a hybrid Make-To-Stock (MTS) and Make-To-Order (MTO) production system for a single product under the cap-and-trade environment. The manufacturer aims to minimize the total cost in production, inventory and emissions allowances trading. The decisions include the selection of production mode (pure MTS, pure MTO or hybrid MTS/MTO), the inventory and emissions trading quantity. We derive the optimal solution analytically. We show that the cost of optimal MTO/MTS hybrid production strategy is remarkably less than that of either pure MTO or pure MTS production strategy alone. Compared with the no initial carbon quota and trading environment, there are significant differences in the optimal production decisions under trading environment. When the emissions cost is a source of costs, the manufacturer has to face more costs pressure even if there is no emissions allowance trading. In particular, the results show that the initial emissions allowance determines the optimal production decision and emissions allowance trading decision in cases where the difference between the inventory cost for per unit product and the delayed delivery cost for per unit order is between the minimum and the maximum emissions cost and has no effect on production mode and emissions allowances trading decision in other cases. These conclusions will provide optimal production decision and carbon trading decision for the manufacture under a cap-and-trade environment.


Sign in / Sign up

Export Citation Format

Share Document