Optimization of linalool-loaded solid lipid nanoparticles using experimental factorial design and long-term stability studies with a new centrifugal sedimentation method

2018 ◽  
Vol 549 (1-2) ◽  
pp. 261-270 ◽  
Author(s):  
Irina Pereira ◽  
Aleksandra Zielińska ◽  
Nuno R. Ferreira ◽  
Amélia M. Silva ◽  
Eliana B. Souto
Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 2991 ◽  
Author(s):  
Debora Santonocito ◽  
Maria Grazia Sarpietro ◽  
Claudia Carbone ◽  
Annamaria Panico ◽  
Agata Campisi ◽  
...  

Curcumin (CUR) has a wide range of pharmacological properties, including anti-inflammatory and antioxidant activities, and it can be considered a good candidate for the potential treatment of central nervous system (CNS) pathologies, although its use in clinical practice is compromised due to its high lipophilicity. Solid lipid nanoparticles (SLNs) are well-known nanocarriers representing a consolidated approach for the delivery of lipophilic compounds, but their systemic use is limited due their short half-life. The formulation of stealth SLNs (pSLNs) could be a valid strategy to overcome this limit. Curcumin-loaded-pSLNs were prepared by the solvent evaporation method. Formulation was characterized for their mean size, zeta potential, size distribution, and morphology. Drug antioxidant activity was evaluated by Oxygen Radical Absorbance Capacity (ORAC) assay. Finally, the obtained formulations were analyzed in terms of long-term stability. Curcumin-loaded-pSLNs showed good technological parameters with a mean particle size below 200 nm, as confirmed by TEM images, and a zeta potential value around −30 mV, predicting good long-term stability. Differential Scanning Calorimetry (DSC) analysis confirmed that PEG micelles interacted with the SLN surface; this suggests the location of the PEG on the pSLN surface. Therefore, these preliminary studies suggest that the produced formulation could be regarded as a promising carrier for the systemic administration.


2020 ◽  
Vol 13 (9) ◽  
pp. 255
Author(s):  
Md. Khalid Anwer ◽  
Mohammed Muqtader Ahmed ◽  
Mohammed F. Aldawsari ◽  
Saad Alshahrani ◽  
Farhat Fatima ◽  
...  

The aim of the current study was to evaluate the therapeutics potential of eluxadoline (ELX) loaded solid lipid nanoparticles (SLNs) in ulcerative colitis. ELX loaded SLNs were prepared using three different lipids according to the solvent emulsification technique. The optimization of prepared SLNs (F1-F3) were carried out based on size, PDI, zeta potential, percent drug entrapment (%EE), and loading (%DL). The lipid (stearic acid) based SLNs (F2) was optimized with particle size (266.0 ± 6.4 nm), PDI (0.217 ± 0.04), zeta potential (31.2 ± 5.19 mV), EE (65.0 ± 4.8%), and DL (4.60 ± 0.8%). The optimized SLNs (F2) was further evaluated by DSC, FTIR, SEM, in vitro release, and stability studies, which confirmed the successful encapsulation of ELX in SLNs. The efficacy of optimized SLNs (F2) in comparison to the pure ELX drug was assessed in acetic acid induced colitis rat models. It was observed that the delivery of ELX by SLNs alleviated the induced acetic acid colitis significantly. Thus, ELX loaded SLNs delivery to the colon has a significant potential to be developed for the treatment of ulcerative colitis.


2019 ◽  
Vol 7 (48) ◽  
pp. 27612-27619 ◽  
Author(s):  
Srinivas Vanka ◽  
Kai Sun ◽  
Guosong Zeng ◽  
Tuan Anh Pham ◽  
Francesca Maria Toma ◽  
...  

GaN/Si photocathode exhibits an ultrahigh stability of 3000 h under AM 1.5G one-sun illumination.


Sign in / Sign up

Export Citation Format

Share Document