scholarly journals Curcumin Containing PEGylated Solid Lipid Nanoparticles for Systemic Administration: A Preliminary Study

Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 2991 ◽  
Author(s):  
Debora Santonocito ◽  
Maria Grazia Sarpietro ◽  
Claudia Carbone ◽  
Annamaria Panico ◽  
Agata Campisi ◽  
...  

Curcumin (CUR) has a wide range of pharmacological properties, including anti-inflammatory and antioxidant activities, and it can be considered a good candidate for the potential treatment of central nervous system (CNS) pathologies, although its use in clinical practice is compromised due to its high lipophilicity. Solid lipid nanoparticles (SLNs) are well-known nanocarriers representing a consolidated approach for the delivery of lipophilic compounds, but their systemic use is limited due their short half-life. The formulation of stealth SLNs (pSLNs) could be a valid strategy to overcome this limit. Curcumin-loaded-pSLNs were prepared by the solvent evaporation method. Formulation was characterized for their mean size, zeta potential, size distribution, and morphology. Drug antioxidant activity was evaluated by Oxygen Radical Absorbance Capacity (ORAC) assay. Finally, the obtained formulations were analyzed in terms of long-term stability. Curcumin-loaded-pSLNs showed good technological parameters with a mean particle size below 200 nm, as confirmed by TEM images, and a zeta potential value around −30 mV, predicting good long-term stability. Differential Scanning Calorimetry (DSC) analysis confirmed that PEG micelles interacted with the SLN surface; this suggests the location of the PEG on the pSLN surface. Therefore, these preliminary studies suggest that the produced formulation could be regarded as a promising carrier for the systemic administration.

2019 ◽  
Vol 9 (1) ◽  
pp. 76-85 ◽  
Author(s):  
R. Nithya ◽  
K. Siram ◽  
R. Hariprasad ◽  
H. Rahman

Background: Paclitaxel (PTX) is a potent anticancer drug which is highly effective against several cancers. Solid lipid nanoparticles (SLNs) loaded with anticancer drugs can enhance its toxicity against tumor cells at low concentrations. Objective: To develop and characterize SLNs of PTX (PSLN) to enhance its toxicity against cancerous cells. Method: The solubility of PTX was screened in various lipids. Solid lipid nanoparticles of PTX (PSLN) were developed by hot homogenization method using Cutina HR and Gelucire 44/14 as lipid carriers and Solutol HS 15 as a surfactant. PSLNs were characterized for size, morphology, zeta potential, entrapment efficiency, physical state of the drug and in vitro release profile in 7.4 pH phosphate buffer saline (PBS). The ability of PTX to enhance toxicity towards cancerous cells was tested by performing cytoxicity assay in MCF7 cell line. Results: Solubility studies of PTX in lipids indicated better solubility when Cutina HR and Gelucire 44/14 were used. PSLNs were found to possess a neutral zeta potential with a size range of 155.4 ± 10.7 nm to 641.9 ± 4.2 nm. In vitro release studies showed a sustained release profile for PSLN over a period of 48 hours. SLNs loaded with PTX were found to be more toxic in killing MCF7 cells at a lower concentration than the free PTX.


2020 ◽  
Vol 13 (9) ◽  
pp. 255
Author(s):  
Md. Khalid Anwer ◽  
Mohammed Muqtader Ahmed ◽  
Mohammed F. Aldawsari ◽  
Saad Alshahrani ◽  
Farhat Fatima ◽  
...  

The aim of the current study was to evaluate the therapeutics potential of eluxadoline (ELX) loaded solid lipid nanoparticles (SLNs) in ulcerative colitis. ELX loaded SLNs were prepared using three different lipids according to the solvent emulsification technique. The optimization of prepared SLNs (F1-F3) were carried out based on size, PDI, zeta potential, percent drug entrapment (%EE), and loading (%DL). The lipid (stearic acid) based SLNs (F2) was optimized with particle size (266.0 ± 6.4 nm), PDI (0.217 ± 0.04), zeta potential (31.2 ± 5.19 mV), EE (65.0 ± 4.8%), and DL (4.60 ± 0.8%). The optimized SLNs (F2) was further evaluated by DSC, FTIR, SEM, in vitro release, and stability studies, which confirmed the successful encapsulation of ELX in SLNs. The efficacy of optimized SLNs (F2) in comparison to the pure ELX drug was assessed in acetic acid induced colitis rat models. It was observed that the delivery of ELX by SLNs alleviated the induced acetic acid colitis significantly. Thus, ELX loaded SLNs delivery to the colon has a significant potential to be developed for the treatment of ulcerative colitis.


Author(s):  
M. Yasmin Begum ◽  
Prathyusha Reddy Gudipati

Objective: The aim of present work was to formulate and evaluate Dasatinib (DST) loaded solid lipid nanoparticles (SLNs) as a potential anticancer drug delivery system by enhancing its solubility.Methods: SLNs consist of a solid lipid matrix where the drug was incorporated. Surfactants of GRAS grade were used to avoid aggregation and to stabilize the SLNs. DST-SLNs formulations of varying concentrations were prepared by high speed homogenization technique and evaluated for drug excipients compatibility study, poly-dispersity index, particle size analysis, surface morphology, zeta potential and drug release features.Results: It was observed that DST-SLNs with optimum quantities of poloxomer: lecithin ratio showed 88.06% drug release in 6h with good entrapment efficiency of 76.9±0.84 %. Particle size, Poly dispersity index, zeta potential and drug entrapment efficiency for the optimized formulation was found to be optimum. Stability studies revealed that the entrapment efficiency of the SLN dispersion stored in 4 °C was stable.Conclusion: Thus, it can be concluded that formulations of DST loaded SLNs are suitable carriers for improving the solubility and dissolution related problems. 


Sign in / Sign up

Export Citation Format

Share Document