Intranasal fosphenytoin: The promise of phosphate esters in nose-to-brain delivery of poorly soluble drugs

2021 ◽  
Vol 592 ◽  
pp. 120040
Author(s):  
Patrícia C. Pires ◽  
Liliana T. Santos ◽  
Márcio Rodrigues ◽  
Gilberto Alves ◽  
Adriana O. Santos
2019 ◽  
Vol 9 (01) ◽  
pp. 15-20
Author(s):  
B Pandey ◽  
A B Khan

The aim of the review was to explore the necessity, advantages and different techniques of oral films for enhancing solubility of poorly soluble drugs with an emphasis on the newer, state-of the art technologies, such as 3D printing and hot-melt extrusion (HME). The historical background of oral films is presented along with the regularly used techniques. The modern approach of quality-by-design (QbD) is unravelled, identifying appropriate critical process parameters (CPP) and applied to oral films. A section is devoted modern technologies such as 3D printing and HME of oral films. Oral films are innovative formulations by which poorly soluble drugs have been founds to give positive results in enhancing their solubility and dissolution characteristics. With modern sophisticated techniques, precise mass production of oral films has been given a thrust. Oral films have better patient compliance, improved biopharmaceutical properties, improved efficacy, and better safety. By applying QbD and implementation of modern technologies the newer generation of oral films are yielding promising results


2019 ◽  
Vol 15 (6) ◽  
pp. 576-588 ◽  
Author(s):  
Beibei Yan ◽  
Yu Gu ◽  
Juan Zhao ◽  
Yangyang Liu ◽  
Lulu Wang ◽  
...  

: According to the drug discovery, approximately 40% of the new chemical entities show poor bioavailability due to their low aqueous solubility. In order to increase the solubility of the drugs, self-micro emulsifying drug delivery systems (SMEDDS) are considered as an ideal technology for enhancing the permeability of poorly soluble drugs in GI membranes. The SMEDDS are also generally used to enhance the oral bioavailability of the hydrophobic drugs. At present, most of the self-microemulsion drugs are liquid dosage forms, which could cause some disadvantages, such as the low bioavailability of the traditional liquid SMEDDS. Therefore, solid self-micro emulsifying drug delivery systems (S-SMEDDS) have emerged widely in recent years, which were prepared by solidifying a semi-solid or liquid self-emulsifying (SE) ingredient into a powder in order to improve stability, treatment and patient compliance. The article gives a comprehensive introduction of the study of SMEDDS which could effectively tackle the problem of the water-insoluble drug, especially the development of solidification technology of SMEDDS. Finally, the present challenges and the prospects in this field were also discussed.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Peer Erfle ◽  
Juliane Riewe ◽  
Heike Bunjes ◽  
Andreas Dietzel

Poorly soluble drugs can be incorporated in lipid carrier nanoparticles to achieve sufficient bioavailability and open up diverse routes of administration. Preparation by antisolvent precipitation in microfluidic systems enables excellent...


Author(s):  
Adryana Rocha Clementino ◽  
Giulia Pellegrini ◽  
Sabrina Banella ◽  
Gaia Colombo ◽  
Laura Cantù ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document