biopharmaceutical properties
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 70)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Manisha Yadav ◽  
J. Satya Eswari

Background: Lipopeptides are potential microbial metabolites that are abandoned with broad spectrum biopharmaceutical properties ranging from antimicrobial, antiviral and anticancer, etc. Clinical studies are not much explored beyond the experimental methods to understand drug mechanisms on target proteins at the molecular level for large molecules. Due to the less available studies on potential target proteins of lipopeptide based drugs, their potential inhibitory role for more obvious treatment on disease have not been explored in the direction of lead optimization. However, Computational approaches need to be utilized to explore drug discovery aspects on lipopeptide based drugs, which are time saving and cost-effective techniques. Methods: Here a ligand-based drug discovery approach is coupled with reverse pharmacophore-mapping for the prediction of potential targets for antiviral (SARS-nCoV-2) and anticancer lipopeptides. Web-based servers PharmMapper and Swiss Target Prediction are used for the identification of target proteins for lipopeptides surfactin and iturin produced by Bacillus subtilis. Results: The studies have given the insight to treat the diseases with next-generation large molecule therapeutics. Results also indicate the affinity for Angiotensin-Converting Enzymes (ACE) and proteases as the potential viral targets for these categories of peptide therapeutics. A target protein for the Human Papilloma Virus (HPV) has also been mapped. Conclusion: The work will further help in exploring computer-aided drug designing of novel compounds with greater efficiency where the structure of the target proteins and lead compounds are known.  


2022 ◽  
pp. 114-159
Author(s):  
Magdalena Pérez Ortiz ◽  
Angélica Guerrero-Castilla ◽  
E. Cristina Quispe Chávez

Phytochemicals have been attributed beneficial health properties, mainly their anticancer potential. Cancer treatment seeks to shrink the tumor and kill cancer cells; however, the conventional treatment available frequently fails due to the emergence of drug-resistant cell lines. Plant-derived compounds have been studied for their potential anticancer effects or as adjuvant drug to conventional treatment. However, some of the physicochemical properties and stability characteristics of the phytocompounds generate biopharmaceuticals difficulties that limit their efficacy and clinical applications in oncology. In this sense, nanomedicine offers an alternative for the development of biocompatible, biodegradable, safe, and efficacy phytoformulations. Nanostructured delivery systems show immense potential in the bioavailability of phytodrugs by providing better alternatives to conventional dosage forms, through improving physicochemical and biopharmaceutical properties of the phytocompounds and along with it to enhance the therapeutic efficacy.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7657
Author(s):  
Giulia Vanti ◽  
Lucrezia Muti ◽  
Mario D’Ambrosio ◽  
Lucia Grifoni ◽  
Maria Camilla Bergonzi ◽  
...  

A novel formulation based on nanostructured lipid carriers (NLCs) was developed to increase solubility and intestinal absorption of khellin. K-NLCs were prepared with stearic acid, hempseed oil, Brij S20, and Labrafil M 1944 CS, using the emulsification-ultrasonication method. Developed nanoparticles were chemically and physically characterized by liquid chromatography, light scattering techniques, and electron microscopy. The size, about 200 nm, was optimal for oral delivery, and the polydispersity index (around 0.26), indicated high sample homogeneity. Additionally, K-NLCs showed a spherical morphology without aggregation by microscopic analysis. The encapsulation efficiency of khellin was about 55%. In vitro release studies were carried out in media with different pH to mimic physiological conditions. K-NLCs were found to be physically stable in the simulated gastric and intestinal fluids, and they preserved about 70% of khellin after 6 h incubation. K-NLCs were also successfully lyophilized testing different lyoprotectants, and obtained freeze-dried K-NLCs demonstrated good shelf life over a month. Lastly, permeability studies on Caco-2 cells were performed to predict khellin passive diffusion across the intestinal epithelium, demonstrating that nanoparticles increased khellin permeability by more than two orders of magnitude. Accordingly, developed NLCs loaded with khellin represent a versatile formulation with good biopharmaceutical properties for oral administration, possibly enhancing khellin’s bioavailability and therapeutic effects.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2160
Author(s):  
Danyingzi Guan ◽  
Bianfei Xuan ◽  
Chengguang Wang ◽  
Ruitao Long ◽  
Yaqin Jiang ◽  
...  

Active pharmaceutical ingredients (APIs) extracted and isolated from traditional Chinese medicines (TCMs) are of interest for drug development due to their wide range of biological activities. However, the overwhelming majority of APIs in TCMs (T-APIs), including flavonoids, terpenoids, alkaloids and phenolic acids, are limited by their poor physicochemical and biopharmaceutical properties, such as solubility, dissolution performance, stability and tabletability for drug development. Cocrystallization of these T-APIs with coformers offers unique advantages to modulate physicochemical properties of these drugs without compromising the therapeutic benefits by non-covalent interactions. This review provides a comprehensive overview of current challenges, applications, and future directions of T-API cocrystals, including cocrystal designs, preparation methods, modifications and corresponding mechanisms of physicochemical and biopharmaceutical properties. Moreover, a variety of studies are presented to elucidate the relationship between the crystal structures of cocrystals and their resulting properties, along with the underlying mechanism for such changes. It is believed that a comprehensive understanding of cocrystal engineering could contribute to the development of more bioactive natural compounds into new drugs.


2021 ◽  
Vol 10 (4) ◽  
pp. 129-137
Author(s):  
A. A. Drannikov ◽  
I. S. Vatlin ◽  
M. Е. Trusova ◽  
A. Di Martino ◽  
S. V. Krivoshchekov ◽  
...  

Introduction. Gramicidin S has been conventionally manufactured as buccal tablets. However, in the past decade, the interest in the development of spray formulations has been growing. Those formulations contain excipients that enhance the solubility of the antibiotic in water solutions. However, the real structure of gramicidin S containing sprays remains unrevealed.Aim. Investigation of colloidal structure and biopharmaceutical properties of new gramicidin S antibacterial composition.Materials and methods. The composition sample was obtained using gramicidin S dihydrochloride, propylene glycol, polysorbate-80, ethanol and purified water. Raman spectroscopy has been performed to determine the composition of the phases. Dynamic light scattering analysis was performed to characterize the composition particles. Release of gramicidin S was performed by dialysis method and the concentration was determined by HPLC. The antimicrobial properties were investigated in accordance with the requirements of the XIV edition of the Russian pharmacopoeia.Results and discussion. Dynamic light scattering analysis results show gramicidin S formulation particles having an average size in solution 5–50 nm and ζ-potential (–1.1: +7.9 mV). Based on the obtained data on the composition properties and formulation parameters it was classified as colloidal solution. The kinetic stability evaluation was performed. We compared the solubility in water and release parameters of the active pharmaceutical ingredient in the native state and in the micelles. The enhancement of the antimicrobial activity of the peptide in the colloidal solution was confirmed and ascribed to the synergic effect gramicidin S – surfactant.Conclusion. We reported the colloidal type of the composition, that aggregate gramicidin S at a concentration of 8 mg/mL. We found that gramicidin S inclusion into the colloidal solution led to significant efficiency increase, which reveals the potential to reduce the drug dose and side effects level.


2021 ◽  
Vol 168 ◽  
pp. 76-89
Author(s):  
Leonardo Delello Di Filippo ◽  
Juliana Hofstätter Azambuja ◽  
Jessyca Aparecida Paes Dutra ◽  
Marcela Tavares Luiz ◽  
Jonatas Lobato Duarte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document