Microfluidics-enabled particle engineering of monodisperse solid lipid microparticles with uniform drug loading and diverse solid-state outcomes

2021 ◽  
Vol 596 ◽  
pp. 120230
Author(s):  
Leon Yoon Ho ◽  
Zi Shun Xiang ◽  
Renuga Gopal ◽  
Saif A. Khan
2020 ◽  
Vol 11 (4) ◽  
pp. 6739-6747
Author(s):  
Amin Mir M ◽  
Muhammad Waqar Ashraf ◽  
Maythem Mahmud

Solid lipid microparticles reach the site of its action in a controlled rate and do show controlled release for a better therapeutic result. A good drug carrying and release system involve a controlled drug delivery that improves bioavailability, to enrich stability and to minimise the toxic effects followed with a targeted drug at the site of its action. The solid lipid microparticles of curcumin were prepared in a view to achieving high permeability of curcumin in the brain through blood-brain-barrier. The lipid microsphere solids were prepared by hot melts microencapsulation technique to formulate solid lipid microspheres. Twelve lipid formulations were prepared with varying concentration of surfactants (span 40, span 70, span 90 and Tween 100). The developed formulation was subjected to various parameters such as the particle size, % entrapment efficiencies, yield productions, % cumulative release, percentage yield and drug loading, based upon highest entrapment efficiency, drug release and % cumulative release, the F3 formulation was considered as the best formulation. The prepared microsphere was subjected to different evaluation parameters such as thin-layer chromatography, melting point, FTIR, solubility, compatibility study and In-vitro drug release. The developed formulation shows spherical and smooth surface. The percentage release of drug F3 formulation has been found highest of about 86.23% after 12 hr.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2073
Author(s):  
Giuseppe Angellotti ◽  
Denise Murgia ◽  
Alessandro Presentato ◽  
Maria Cristina D’Oca ◽  
Amalia Giulia Scarpaci ◽  
...  

The development of efficacious means of delivering antioxidant polyphenols from natural sources for the treatment of skin diseases is of great interest for many cosmetic and pharmaceutical companies. Resveratrol (RSV) and Limonene (LIM) have been shown to possess good anti-inflammatory and antibacterial properties against Staphylococcus aureus infections responsible for many skin disorders, such as acne vulgaris. In this study, solid lipid microparticles are designed as composite vehicles capable of encapsulating a high amount of trans-RSV and enhancing its absorption through the stratum corneum. A microparticulate system based on mixture of PEGylate lipids, long-chain alcohols and LIM is able to entrap RSV in an amorphous state, increasing its half-life and avoiding inactivation due to isomerization phenomena, which represents the main drawback in topical formulations. Particles have been characterized in term of shape, size distribution and drug loading. Antimicrobial tests against S. aureus have highlighted that empty microspheres possess per se antimicrobial activity, which is enhanced by the presence of LIM, demonstrating that they can represent an interesting bactericide vehicle for RSV administration on the skin.


Author(s):  
Chukwuebuka Umeyor ◽  
Uchechukwu Nnadozie ◽  
Anthony Attama

This study seeks to formulate and evaluate a solid lipid nanoparticle-based, solidified micellar carrier system for oral delivery of cefepime. Cefepime has enjoyed a lot of therapeutic usage in the treatment of susceptible bacterial infections; however, its use is limited due to its administration as an injection only with poor patient compliance. Since oral drug administration encourage high patient compliance with resultant effect in improved therapy, cefepime was formulated as solid lipid microparticles for oral delivery using the concept of solidified micellar carrier system. The carrier system was evaluated based on particle yield, particle size and morphology, encapsulation efficiency (EE %), and thermal analysis using differential scanning calorimeter (DSC). Preliminary microbiological studies were done using gram positive and negative bacteria. In vitro release study was performed using biorelevant media, while in vivo release study was performed in white albino rats. The yield of solid lipid microparticles (SLM) ranged from 84.2 – 98.0 %. The SLM were spherical with size ranges of 3.8 ± 1.2 to 42.0 ± 1.4 µm. The EE % calculated ranged from 83.6 – 94.8 %. Thermal analysis showed that SLM was less crystalline with high potential for drug entrapment. Microbial studies showed that cefepime retained its broad spectrum anti-bacterial activity. In vitro release showed sustained release of cefepime from SLM, and in vivo release study showed high concentration of cefepime released in the plasma of study rats. The study showed that smart engineering of solidified micellar carrier system could be used to improve oral delivery of cefepime.


2015 ◽  
Vol 67 ◽  
pp. 52-59 ◽  
Author(s):  
Fernando Eustáquio Matos-Jr ◽  
Marcello Di Sabatino ◽  
Nadia Passerini ◽  
Carmen Sílvia Favaro-Trindade ◽  
Beatrice Albertini

2018 ◽  
Vol 113 ◽  
pp. 351-361 ◽  
Author(s):  
Fernanda Ramalho Procopio ◽  
Vivian Boesso Oriani ◽  
Bruno Nicolau Paulino ◽  
Leonardo do Prado-Silva ◽  
Glaucia Maria Pastore ◽  
...  

2016 ◽  
Vol 04 (05) ◽  
Author(s):  
Anantha Naik Nagappa ◽  
Gaurav Agarwal ◽  
Vinuth Chikkamath ◽  
Shilpi Agarwal ◽  
Rekha Rani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document