Advancing the understanding of the tablet disintegration phenomenon – An update on recent studies

2021 ◽  
Vol 598 ◽  
pp. 120390 ◽  
Author(s):  
Alberto Berardi ◽  
Lorina Bisharat ◽  
Julian Quodbach ◽  
Safwan Abdel Rahim ◽  
Diego R. Perinelli ◽  
...  
Author(s):  
V A. Vamshi Priya ◽  
G. Chandra Sekhara Rao ◽  
D. Srinivas Reddy ◽  
V. Prabhakar Reddy

The purpose of this study was to investigate the efficiency of superdisintegrants: sodium starch glycolate, croscarmellose sodium and crospovidone in promoting tablet disintegration and drug dissolution of Topiramate immediate release tablets. The efficiency of superdisintegrants was tested, by considering four concentrations, viz., like 2%, 3%, 4% and 5% in the formulations. The dissolution was carried out in USP apparatus II at 50 rpm with distilled water as a dissolution medium. The dissolution rate of the model drug topiramate was found highly dependent on the tablet disintegration, on the particle size of the superdisintegrant, on the solubility of the drug and also on the type of superdisintegrant in the dissolution medium. There was no effect of the diluent (Lactose monohydrate) on the disintegration of different concentrations of superdisintegrants. These results suggest that, as determined by the f2 metric (similarity factor), the dissolution profile of the formulation containing 4% sodium starch glycolate and lactose monohydrate as a diluent was similar to that of a marketed product.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 108
Author(s):  
Tanikan Sangnim ◽  
Pornsak Sriamornsak ◽  
Inderbir Singh ◽  
Kampanart Huanbutta

Dysphagia refers to difficulty swallowing certain foods, liquids, or pills. It is common among the elderly with chronic diseases who need to take drugs for long periods. Therefore, dysphagia might reduce compliance with oral drug administration in the aging population. Many pharmaceutical companies search for new products to serve as swallowing aids. Existing products are expensive and do not suit all geriatric patients. Therefore, this study aimed to develop and investigate pill swallowing aid gels prepared from carboxymethyl cellulose and chitosan. We formulated gels by dissolving different concentrations of carboxymethyl cellulose and low or high molecular weight chitosan in solvents to find appropriate gel rheology properties. We then added several portions of glycerin as the glidant of the formulation. We found that the optimized gel formulation was 6.25% (w/w) chitosan with a molecular weight of 80–120 kDa dissolved in 1.2% acetic acid and 4% (w/w) glycerin. The developed pill swallowing gel’s rheology was pseudoplastic with a viscosity of 73.74 ± 3.20 Pa⸱s. The developed chitosan gel had enhanced flow ability; it allowed the pill to cross a 300 mm tube within 6 s, while the reference product took 3 s. Even though the reference product could carry the pill in the tube faster, the chitosan gel better covered the pill, making it more convenient to use. Finally, using a theophylline tablet as a model tablet dosage form, we assessed the gel’s effect on drug disintegration and dissolution. The chitosan gel delayed the tablet disintegration time by about 3–7 min and slightly affected the theophylline dissolution rate. Lastly, all gels were physically stable after a month of storage in the stress condition. These results show the feasibility of manufacturing a chitosan gel usable as a pill swallowing gel for patients with dysphagia.


1964 ◽  
Vol 53 (4) ◽  
pp. 447-449 ◽  
Author(s):  
Leonard L. Kaplan

2015 ◽  
Vol 51 (1) ◽  
pp. 155-171 ◽  
Author(s):  
Daniel García Ramírez ◽  
Leopoldo Villafuerte Robles

Specific values of technological properties of excipients allow the establishment of numerical parameters to define and compare their functionality. This study investigates the functionality of Polyplasdones XL and XL10. Parameters studied included tablet disintegration profiles, compactibility profiles and powder flow. The results allowed the establishment of quantitative surrogate functionalities of technological performance, such as absolute number, and as a value relative to the known microcrystalline cellulose type 102. Moreover, the establishment of an explicit functionality to improve the technological performance of two diluents and a model drug was investigated, as was setting up of these functionalities, as quantitative values, to determine the input variables of each material and its probable functionality in a drug product. Disintegration times of pure Polyplasdone XL and its admixtures were around half that of Polyplasdone XL10. The improvement in tablet compactibility was 25-50% greater for Polyplasdone XL10 than Polyplasdone XL. Crospovidones proportions of up to 10% have little effect on the flow properties of other powders, although pure Polyplasdone XL10 and its admixtures display compressibility indexes about 20% greater than Polyplasdone XL. The observed results are in line with a smaller particle size of Polyplasdone XL10 compared to Polyplasdone XL.


2018 ◽  
Vol 5 (1) ◽  
pp. 1-6
Author(s):  
Forder S ◽  
Voelker M

Migraine is a global disorder and considerably affecting people`s quality of life. Treatments include nonsteroidal anti-inflammatory drugs-containing medicinal products among whom acetylsalicylic acid-containing Aspirin® has been proven effectively to relief migraine headache. Early treatment is recommended for patients with migraine attacks. A requirement for early onset of action includes tablet disintegration and consequent active ingredient dissolution and absorption. The bioavailability of a new quickly disintegrating 1,000 mg aspirin formulation has been investigated in a bioequivalence study versus a marketed Aspirin® formulation with clinically demonstrated early onset of action. The new formulation has a tablet strength (1,000 mg) and time to maximum plasma concentration (mean 21.6 minutes) providing upside for people requiring treatment of migraine headache


The Lancet ◽  
1972 ◽  
Vol 299 (7748) ◽  
pp. 490-491 ◽  
Author(s):  
Vesa Manninen ◽  
John Melin ◽  
Pentti Reissel

Sign in / Sign up

Export Citation Format

Share Document