Modeling of cyclic hardening and evaluation of plastic strain range in the presence of pre-loading and ratcheting

Author(s):  
Nobutada Ohno ◽  
Hisashi Nakamoto ◽  
Yusuke Morimatsu ◽  
Dai Okumura
1981 ◽  
Vol 12 ◽  
Author(s):  
T. Ishii ◽  
D. J. Duquette ◽  
N. S. Stoloff

AbstractThe low cycle fatigue behavior at 25°C and 825°C of three advanced nickel-base eutectics is described. Fatigue lives are shown to obey a linear relation with plastic strain range (Coffin-Manson relation) but lives are much lower than are observed for conventional metals and alloys. Cyclic hardening and softening were observed in each alloy at 25 °C; however, this behavior differs from the classical saturation behavior observed with isotropic materials.


Author(s):  
Zhong Zhang ◽  
Xijia Wu

Abstract A general fatigue life equation is derived by modifying the Tanaka-Mura-Wu dislocation pile-up model for variable strain-amplitude fatigue processes, where the fatigue crack nucleation life is expressed in terms of the root mean square of plastic strain range. Low-cycle fatigue tests were conducted on an austenitic stainless steel. at 400°C and 600°C, the material exhibits continuously cyclic-hardening behaviour. The root mean square of plastic strain ranges is evaluated from the experimental data for each test condition at strain rates ranging from 0.0002/s to 0.02/s. The variable-amplitude Tanaka-Mura-Wu model is found to be in good agreement with the LCF data, which effectively proves Miner’s rule on the stored plastic strain energy basis.


Author(s):  
Zhong Zhang ◽  
Xijia Wu

Abstract A general fatigue life equation is derived by modifying the Tanaka-Mura-Wu dislocation pile-up model for variable strain-amplitude fatigue processes, where the fatigue crack nucleation life is expressed in terms of the root mean square of plastic strain range. Low-cycle fatigue tests were conducted on an austenitic stainless steel. At 400 ? and 600 ?, the material exhibits continuously cyclic-hardening behaviour. The root mean square of plastic strain ranges is evaluated from the experimental data for each test condition at strain rates ranging from 0.0002/s to 0.02/s. The variable-amplitude Tanaka-Mura-Wu model is found to be in good agreement with the LCF data, which effectively proves Miner's rule on the stored plastic strain energy basis.


1977 ◽  
Vol 99 (3) ◽  
pp. 432-443 ◽  
Author(s):  
C. E. Jaske

This program was undertaken to develop isothermal low-cycle fatigue information for AISI 1010 steel in air. Such information is needed to help predict acceptable conditions for equipment and structures operating at elevated temperatures. Tensile properties and cyclic stress-strain behavior were also developed. For lives between 103 and 106 cycles to failure, fatigue curves were developed at 70, 400, 600, 800, 1000, and 1200°F (21, 204, 316, 427,538, and 649°C). Data for these curves were obtained from constant-amplitude, fully reversed strain-cycling tests of axially loaded specimens. Results from the same experiments were used to define cyclic stress-strain curves at each of the above temperatures. Dynamic strain aging caused a maximum amount of cyclic hardening at 600°F (316°C). In terms of stress amplitude, the maximum fatigue strength was at 600°F (316°C). In terms of either total strain range or plastic strain range, the maximum fatigue resistance was at 400°F (204°C). At temperaures above 600°F (316°C), fatigue resistance decreased as temperature increased. Tensile hold periods caused a significant reduction in cyclic life at 800 and 1000°F (427 and 538°C) but had no noticeable effect on cyclic life at 600°F (316°C). Fatigue resistance was quantified in terms of power functions relating fatigue life to both plastic strain range and stress amplitude, and cyclic stress-strain response was quantified in terms of a power function relating stress amplitude to plastic strain amplitude. The method of strain-range partitioning provided good cyclic life predictions for the limited number of tensile hold-time experiments, although other types of hold periods were not evaluated.


Author(s):  
Haofeng Chen ◽  
Alan R. S. Ponter

In 2003 ASME PVP conference, a series of numerical procedures for integrity assessment based upon recently developed Linear Matching Method were presented [1]. A typical example of holed plate was used to verify these procedures for the evaluation of plastic and creep behaviours of complex geometry components based on linear solutions, which can be easily implemented into the commercial FE code ABAQUS through user subroutines. In this paper, a more complex 3D tubeplate in a typical AGR superheater header is analysed for the shakedown limit, reverse plasticity, ratchet limit and creep relaxation based on application of the Linear Matching Method. Both the perfectly plastic model and the cyclic hardening model are adopted for the evaluation of the plastic strain range. For the evaluation of accumulated creep strains, flow stresses and elastic follow-up factors with differing dwell times at the steady cyclic state, a creep-reverse plasticity model is adopted. The total inelastic strain range over the cycle at the steady cyclic state is calculated. By comparing these results with ABAQUS step-by-step inelastic analyses, the applicability of the methods is verified.


1990 ◽  
Vol 112 (2) ◽  
pp. 94-99 ◽  
Author(s):  
T. S. E. Summers ◽  
J. W. Morris

Isothermal fatigue data were collected for the compositions 5Sn-95Pb, 20Sn-80Pb, 40Sn-60Pb, 50Sn-50Pb and 63Sn-37Pb within the binary Sn-Pb system. All of these compositions are commercially available and include those most commonly used. Because Sn-rich solders are rarely used, they were not investigated here. The fatigue life was defined by a 30 percent load drop. The solders were tested in a double shear configuration joined to copper at 75° C. The displacement rate chosen was 0.01 mm/min, which corresponds to a strain rate of 1.5 × 10−4s−1 for our specimen configuration, over a 10 percent plastic strain range. Additionally, the microstructural changes during fatigue are presented. The various solder compositions studied exhibit strikingly different as-solidified microstructures. These differences are discussed in terms of their effect on the isothermal joint failure mechanism and joint isothermal fatigue life.


1985 ◽  
Vol 52 (2) ◽  
pp. 298-302 ◽  
Author(s):  
D. L. McDowell

A two surface stress space model is introduced with internal state variable repositories for fading memory of maximum plastic strain range and non-proportionality of loading. Evolution equations for isotropic hardening variables are prescribed as a function of these internal variables and accumulated plastic strain, and reflect dislocation interactions that occur in real materials. The hardening modulus is made a function of prior plastic deformation and the distance of the current stress point from the limit surface. The kinematic hardening rules of Mroz and Prager are used for the yield and limit surfaces, respectively. The structure of the model is capable of representing essential aspects of complex nonproportional deformation behavior, including direction of the plastic strain rate vector, memory of plastic strain range, cross-hardening effects, variation of hardening modulus, cyclic hardening or softening, cyclic racheting, and mean stress relaxation.


Sign in / Sign up

Export Citation Format

Share Document