Mechanical behavior analysis of buried pipeline under stratum settlement caused by underground mining

2020 ◽  
Vol 188 ◽  
pp. 104212
Author(s):  
Cheng Yu ◽  
Chuanjun Han ◽  
Rui Xie ◽  
Lin Wang
Author(s):  
Rui Xie ◽  
Prof. Jie Zhang

Abstract Thaw settlement is one of main reason caused pipeline failure crossing cold region. Mechanical behavior of buried pipeline crossing thaw settlement zone is investigated. Effects of pipeline and soil parameters on the buried pipeline were discussed. The results show that the high stress area and the max axial strain of the pipeline is at the edge of the thaw settlement zone. The upper surface of the pipeline is tensile strain, while the lower surface is compressive strain. The max ovality of pipeline near the edge of thaw settlement zone tends to oval. The pipeline axial strain, ovality and displacement decreases with the increasing of pipeline wall thickness, while the change of high stress area is not obvious. The high stress area and ovality decrease with the increasing of pipeline diameter, while the high stress area is expanded along the axial direction, but axial strain decreases slightly. The high stress area, axial strain, ovality and displacement of pipeline decrease with the buried depth increases. With the internal pressure increases, the stress and axial strain of pipeline increase, but the ovality decreases. The soil`s elasticity modulus has no obvious effect on pipeline`s stress, axial strain and displacement, but it can affect ovality slightly.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 3016 ◽  
Author(s):  
Shen ◽  
Wang ◽  
Cao ◽  
Su ◽  
Nan ◽  
...  

Due to the additional abutment stress, interactional hard roof structures (IHRS) affect the normal operation of the coal production system in underground mining. The movement of IHRS may result in security problems, such as the failure of supporting body, large deformation, and even roof caving for nearby openings. According to the physical configuration and loading conditions of IHRS in a simple two-dimensional physical model under the plane stress condition, mining-induced failure criteria were proposed and validated by the mechanical behavior of IHRS in a mechanical analysis model. The results indicate that IHRS, consisting of three interactional parts—the lower key structure, the middle soft interlayer, and the upper key structure—are governed by the additional abutment stress induced by the longwall mining working face. The fracture of the upper key structure in IHRS can be explained as follows: Due to the crushing failure, lower key structure, and middle soft interlayer yield, the action force between the upper and lower key structures vanishes, resulting in fracture of the upper key structure in IHRS. In a field case, when additional abutment stress reaches 7.37 MPa, the energy of 2.35 × 105 J is generated by the fracture of the upper key structure in IHRS. Under the same geological and engineering conditions, the energy generated by IHRS is much larger than that generated by a single hard roof. The mining-induced failure criteria are successfully applied in a field case. The in-situ mechanical behavior of the openings nearby IHRS under the mining abutment stress can be clearly explained by the proposed criteria.


2010 ◽  
Vol 20 (3) ◽  
pp. 1916-1919 ◽  
Author(s):  
Peng Chen ◽  
Yinming Dai ◽  
Qiuliang Wang ◽  
Quan Zhang

Sign in / Sign up

Export Citation Format

Share Document