Waste heat driven absorption/vapor-compression cascade refrigeration system for megawatt scale, high-flux, low-temperature cooling

2011 ◽  
Vol 34 (8) ◽  
pp. 1776-1785 ◽  
Author(s):  
Srinivas Garimella ◽  
Ashlie M. Brown ◽  
Ananda Krishna Nagavarapu
2015 ◽  
Vol 75 ◽  
pp. 504-512 ◽  
Author(s):  
Yingjie Xu ◽  
FuSheng Chen ◽  
Qin Wang ◽  
Xiaohong Han ◽  
Dahong Li ◽  
...  

Author(s):  
Hendri ◽  
Roswati Nurhasanah ◽  
Prayudi ◽  
Suhengki

Low temperature storage with a single refrigeration system only stable up to 228 K temperature. The purpose of this study is to develop a low temperature cool storage with cascade refrigeration system, with hydrocarbon refrigerants in terms of energy and exergy analysis. Experimental research in laboratories using refrigerant hydrocarbon MC22 and MC134 on the hight temperature circuit, and R404A and R502 using on low temperature circuit. Condenser heat exchanger using a type of exchanger plate. Resulting from this research, obtained that result the MC22/R404A, MC22/R502 and MC134/R404A refrigerant pair can reach a temperature of 220 K. The MC22/R404A refrigerant pair has god performance, COP, total loss exergy, and exergy efficiency is better than MC22/R502, and MC134/R04A refrigerant pairs.


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 210 ◽  
Author(s):  
Xiaojing Sun ◽  
Linlin Liu ◽  
Yu Zhuang ◽  
Lei Zhang ◽  
Jian Du

Compression–absorption cascade refrigeration system (CACRS) is the extension of absorption refrigeration system, which can be utilized to recover excess heat of heat exchanger networks (HENs) and compensate refrigeration demand. In this work, a stage-wise superstructure is presented to integrate the generation and evaporation processes of CACRS within HEN, where the generator is driven by hot process streams, and the evaporation processes provide cooling energy to HEN. Considering that the operating condition of CACRS has significant effect on the coefficient of performance (COP) of CACRS and so do the structure of HEN, CACRS and HEN are considered as a whole system in this study, where the operating condition and performance of CACRS and the structure of HEN are optimized simultaneously. The quantitative relationship between COP and operating variables of CACRS is determined by process simulation and data fitting. To accomplish the optimal design purpose, a mixed integer non-linear programming (MINLP) model is formulated according to the proposed superstructure, with the objective of minimizing total annual cost (TAC). At last, two case studies are presented to demonstrate that desired HEN can be achieved by applying the proposed method, and the results show that the integrated HEN-CACRS system is capable to utilize energy reasonably and reduce the total annualized cost by 38.6% and 37.9% respectively since it could recover waste heat from hot process stream to produce the cooling energy required by the system.


2011 ◽  
Vol 19 (03) ◽  
pp. 203-212 ◽  
Author(s):  
DUSHYANTHA GUNAWARDANE ◽  
PRADEEP BANSAL

This paper presents a mathematical model for the evaporator of a cascade refrigeration system, operating down to -40°C. The system uses Carbon dioxide (R744) and Propylene (R1270), respectively, as the low temperature and high temperature cycle refrigerant. The model is developed in Engineering Equation Solver software package following the elemental Number of Transfer Units-effectiveness method, where frost has not been considered. The evaporator is a cross-flow finned tube serpentine heat exchanger, which was divided into numerous elements along the flow path of the refrigerant. The inputs to the model include inlet temperatures and mass flow rates of both the streams along with the heat flux, while the main outputs are the outlet temperatures, refrigeration capacity and HX effectiveness. The model is found to underpredict the refrigeration capacity by about 10% when compared with experimental data.


Sign in / Sign up

Export Citation Format

Share Document