Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application

2014 ◽  
Vol 42 ◽  
pp. 112-120 ◽  
Author(s):  
Da Hee Choi ◽  
Juhyuk Lee ◽  
Hiki Hong ◽  
Yong Tae Kang
2020 ◽  
Vol 834 ◽  
pp. 132-138
Author(s):  
Bi Chuan Chi ◽  
Yan Yao ◽  
Su Ping Cui

Methyl palmitate (MP) is a promising phase change energy storage material. It features high latent heat, suitable phase change temperature, low degree of supercooling and so on. However, like other organic phase change materials, the common problem of lower thermal conductivity makes it unable to perform better in energy storage. Expanded graphite (EG) has been proven to be high-efficiency for enhancing the thermal conductivity of organic phase change materials. MP/EG phase change composite was prepared and characterized in this research, and the heat transfer performance was numerical simulated by finite element analysis software ABAQUS. Results show that MP can be absorbed into the layered pores of EG, and the stable absorption ratio is 77%. Numerical simulation results reveal that EG can significantly enhance the heat transfer performance of MP. Moreover, EG can decrease the system temperature gradient during phase change process that makes the heat transfer and temperature distribution more uniform.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
S. Arunachalam

Energy storage helps in waste management, environmental protection, saving of fossil fuels, cost effectiveness, and sustainable growth. Phase change material (PCM) is a substance which undergoes simultaneous melting and solidification at certain temperature and pressure and can thereby absorb and release thermal energy. Phase change materials are also called thermal batteries which have the ability to store large amount of heat at fixed temperature. Effective integration of the latent heat thermal energy storage system with solar thermal collectors depends on heat storage materials and heat exchangers. The practical limitation of the latent heat thermal energy system for successful implementation in various applications is mainly from its low thermal conductivity. Low thermal conductivity leads to low heat transfer coefficient, and thereby, the phase change process is prolonged which signifies the requirement of heat transfer enhancement techniques. Typically, for salt hydrates and organic PCMs, the thermal conductivity range varies between 0.4–0.7 W/m K and 0.15–0.3 W/m K which increases the thermal resistance within phase change materials during operation, seriously affecting efficiency and thermal response. This paper reviews the different geometry of commercial heat exchangers that can be used to address the problem of low thermal conductivity, like use of fins, additives with high thermal conductivity materials like metal strips, microencapsulated PCM, composite PCM, porous metals, porous metal foam matrix, carbon nanofibers and nanotubes, etc. Finally, different solar thermal applications and potential PCMs for low-temperature thermal energy storage were also discussed.


2020 ◽  
Vol 993 ◽  
pp. 920-926
Author(s):  
Bi Chuan Chi ◽  
Yan Yao ◽  
Su Ping Cui

The binary eutectic mixtures of fatty acid esters are promising phase change materials for energy storage application. However, the low thermal conductivity which is a common problem for organic phase change materials restricts their further and better applications. In order to solve the problem, a novel composite phase change material (CPCM) was prepared in this research by using methyl palmitate-methyl stearate (MP-MS), a typical binary eutectic mixture of fatty acid esters, as phase change material and expanded graphite (EG) as heat transfer enhancer. The heat transfer performance of MP-MS/EG CPCM was numerical simulated by finite element analysis software ABAQUS. Numerical simulation results revealed that EG could notably enhance the heat transfer performance of MP-MS eutectic mixture. The heat transfer rate and phase change reaction rate of MP-MS/EG CPCM were 14 times and 3 times that of MP-MS eutectic mixture, respectively.


Author(s):  
C. Y. Zhao ◽  
D. Zhou ◽  
Z. G. Wu

In this paper the solid/liquid phase change heat transfer in porous materials (metal foams and expanded graphite) at low and high temperatures is experimentally investigated, in an attempt to examine the feasibility of using metal foams to enhance the heat transfer capability of phase change materials for use with both the low and high temperature thermal energy storage systems. In this research, the organic commercial paraffin wax and inorganic hydrate calcium chloride hydrate salts were employed as the low-temperature materials, while the sodium nitrate is used as the high-temperature PCM in the experiment. The heat transfer characteristics of these PCMs embedded with open-cell metal foams were studied experimentally. The composites of paraffin and expanded graphite with different graphite mass ratios, namely, 3%, 6% and 9%, were also made and the heat transfer performances of these composites were tested and compared with metal foams. Overall metal foams can provide better heat transfer performance than expanded graphite due to their continuous inter-connected structures. But the porous materials can suppress the natural convection effect in liquid zone, particularly for the PCMs with low viscosities, thereby leading to the different heat transfer performance at different regimes (solid, solid/liquid and liquid regions). This implies that the porous materials don’t necessarily mean they can always enhance heat transfer in every regime.


2013 ◽  
Vol 860-863 ◽  
pp. 862-866 ◽  
Author(s):  
Yi Fei Zheng ◽  
Zhong Zhu Qiu ◽  
Jie Chen

Phase change materials in the form of emulsion (PCE) is a category of novel phase change fluid used as heat storage and transfer media. It plays an important role in commercially viable applications (energy storage, particularly).The emulsion is made of microparticles of a phase change wax (a kind of paraffin or mixture ) as a phase change material (PCM), mixed paraffin directly with water. This paper presents information on the different PCM emulsions by different researchers. It gives the method of preparation of the PCE, and makes a special effort to investigate the heat transfer phenomena and the method of enhancing the thermal conductivity of the emulsion.


Author(s):  
Yannan Liang ◽  
Jiemin Zhou ◽  
Ying Yang ◽  
Ye Wu ◽  
Yanyan He

The use of phase-change materials for latent heat storage is a new type of environmentally-friendly energy-saving technologies. Molten salts, one kind of phase-change materials, which have high latent heats, and whose phase transition temperatures match the high temperatures of heat engines, are the most widely used high-temperature phase-change heat storage materials. However, the heat transfer at solid/liquid phase interface belongs to Micro/Nanoscale Heat transfer, lots of the thermal properties of molten salt at melting point is difficult to test. In this investigation, based on the theory that the thermal conductivity can be determined by measuring the speed of the propagation of the solid/liquid phase interface during phase change, a set of system is developed to investigate the thermal conductivity of molten salts at liquid/solid phase transformation point. Meanwhile, mathematical calculation is applied to intuitively simulate the melting and solidifying process in the phase change chamber, by which the error could be analyzed and partly corrected and the result precision could also be increased. And a series of verification experiments have been performed to estimate the precision and the applicability of the measuring system to evaluate the feasibility of the method and measuring system. This research will pave the way to the follow-on research on heat storage at high temperature in industry.


Author(s):  
Liang Wang ◽  
Li Liu ◽  
Yifei Wang ◽  
Lei Chai ◽  
Zheng Yang ◽  
...  

Phase change microencapsules are the microsized particles made of phase change materials (paraffin wax ect.) sealed by the thin shell (polymer ect.) via the methods of microencapsulation. During last decade, due to the large amount of melting/solidifying heat, much attention have been paid on their application in environmental control, building, textiles and electronics ect. Also the novel thermal fluids by phase change microencapsules suspending in the traditional thermal fluids have shown their superior heat storage density and convective heat transfer performance, which can behave as heat storage media and heat transfer media simultaneously. However, the density difference between the phase change microencapsules and tranditional unitary fluid would lead to the unstable suspending states which seriously affect the heat storage and heat transfer performance. Binary mixtures such as alcohol-water etc have already played the important roles in the heat transfer equipments. In this paper, binary propanol-water mixtures of various proportion were formulated as the base fluids, and their stabilities were studied. The result shows that binary propanol-water mixtures with the desity of 941kg/m3 showed the best stability and no stratification was found after standing for 48 hours. The morphology and diameter distribution of the microencapsule particles were tested by the scanning electron microscope (SEM) and Malvern Nanosizer respectively, and the result show that the diameter of the particles is in the range of 10–80μm with the average value of 26.4μm. The phase change enthalpy and the effective heat capacity of phase change microencapsule suspensions with the concentration of 10–40wt% were measured by the differencial scanning calorimeter (DSC) and it was found the phase change enthalpy of the phase change microencapsule is 152.8J/g and the undercooling is only 7.3°C. The effect of concentration and temperature on the rheological behavior and viscosities of suspensions were experimentally studied by the TA DHR-G2 rheometer. The result shows that the suspensions behave as Newtonian fluids even when the concentration is as high as 40wt% and the viscosities fit well with Vand model. By the Hot Disk 2500S thermal constant analyzer (Sweden), the thermal conductivities of 0–40wt% suspensions were tested at 20–70°C and the variation was analyzed further. The concentration and expansion of MPCM particles during the phase change period were found to affect the thermal expansion coefficient of the MPCM suspensions obviously. The above experimental result and analyzation of stability and thermophysical properties will provide a complete and important data for the application in heat storage and heat transfer.


Sign in / Sign up

Export Citation Format

Share Document