Influence of piston displacement profiles on the performance of a novel dual piston linear compressor

2020 ◽  
Vol 117 ◽  
pp. 71-80
Author(s):  
Yidi Wei ◽  
Zhengxing Zuo ◽  
Boru Jia ◽  
Huihua Feng ◽  
Kun Liang
Author(s):  
Lei Ding ◽  
Hua Zhang ◽  
Shaoshuai Liu ◽  
Zhenhua Jiang ◽  
Haifeng Zhu ◽  
...  

Author(s):  
Domenico Borello ◽  
Giovanni Delibra ◽  
Franco Rispoli

In this paper we present an innovative Partially Averaged Navier Stokes (PANS) approach for the simulation of turbomachinery flows. The elliptic relaxation k-ε-ζ-f model was used as baseline Unsteady Reynolds Averaged Navier Stokes (URANS) model for the derivation of the PANS formulation. The well established T-FlowS unstructured finite volume in-house code was used for the computations. A preliminary assessment of the developed formulation was carried out on a 2D hill flow that represents a very demanding test case for turbulence models. The turbomachinery flow here investigated reproduces the experimental campaign carried out at Virginia Tech on a linear compressor cascade with tip leakage. Their measurements were used for comparisons with numerical results. The predictive capabilities of the model were assessed through the analysis of the flow field. Then an investigation of the blade passage, where experiments were not available, was carried out to detect the main loss sources.


Author(s):  
Wei Ma ◽  
Feng Gao ◽  
Xavier Ottavy ◽  
Lipeng Lu ◽  
A. J. Wang

Recently bimodal phenomenon in corner separation has been found by Ma et al. (Experiments in Fluids, 2013, doi:10.1007/s00348-013-1546-y). Through detailed and accurate experimental results of the velocity flow field in a linear compressor cascade, they discovered two aperiodic modes exist in the corner separation of the compressor cascade. This phenomenon reflects the flow in corner separation is high intermittent, and large-scale coherent structures corresponding to two modes exist in the flow field of corner separation. However the generation mechanism of the bimodal phenomenon in corner separation is still unclear and thus needs to be studied further. In order to obtain instantaneous flow field with different unsteadiness and thus to analyse the mechanisms of bimodal phenomenon in corner separation, in this paper detached-eddy simulation (DES) is used to simulate the flow field in the linear compressor cascade where bimodal phenomenon has been found in previous experiment. DES in this paper successfully captures the bimodal phenomenon in the linear compressor cascade found in experiment, including the locations of bimodal points and the development of bimodal points along a line that normal to the blade suction side. We infer that the bimodal phenomenon in the corner separation is induced by the strong interaction between the following two facts. The first is the unsteady upstream flow nearby the leading edge whose angle and magnitude fluctuate simultaneously and significantly. The second is the high unsteady separation in the corner region.


2017 ◽  
Vol 74 ◽  
pp. 116-128 ◽  
Author(s):  
A. Bijanzad ◽  
A. Hassan ◽  
I. Lazoglu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document