Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads

Author(s):  
Q.B. Zhang ◽  
J. Zhao
2016 ◽  
Vol 140 ◽  
pp. 192-201 ◽  
Author(s):  
Mahoor Mehdikhani ◽  
Mohammadali Aravand ◽  
Baris Sabuncuoglu ◽  
Michaël G. Callens ◽  
Stepan V. Lomov ◽  
...  

2016 ◽  
Vol 25 (9) ◽  
pp. 095032 ◽  
Author(s):  
Ali Imani Azad ◽  
Mohammad Reza Rahimi ◽  
Gun Jin Yun

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3530
Author(s):  
Xu Liu ◽  
Rongsheng Lu

The testing of the mechanical properties of materials on a small scale is difficult because of the small specimen size and the difficulty of measuring the full-field strain. To tackle this problem, a testing system for investigating the mechanical properties of small-scale specimens based on the three-dimensional (3D) microscopic digital image correlation (DIC) combined with a micro tensile machine is proposed. Firstly, the testing system is described in detail, including the design of the micro tensile machine and the 3D microscopic DIC method. Then, the effects of different shape functions on the matching accuracy obtained by the inverse compositional Gauss–Newton (IC-GN) algorithm are investigated and the numerical experiment results verify that the error due to under matched shape functions is far larger than that of overmatched shape functions. The reprojection error is shown to be smaller than before when employing the modified iteratively weighted radial alignment constraint method. Both displacement and uniaxial measurements were performed to demonstrate the 3D microscopic DIC method and the testing system built. The experimental results confirm that the testing system built can accurately measure the full-field strain and mechanical properties of small-scale specimens.


Sign in / Sign up

Export Citation Format

Share Document