Progressive damage and fracture of biaxially-confined anisotropic coal under repeated impact loads

Author(s):  
J. Li ◽  
H.C. Wang ◽  
Q.B. Zhang
2022 ◽  
Vol 319 ◽  
pp. 126151
Author(s):  
Ferhat Çeçen ◽  
Bekir Aktaş ◽  
Hakan Öztürk ◽  
M. Burhan Navdar ◽  
İrfan Ş. Öztürk

2018 ◽  
Vol 85 (8) ◽  
Author(s):  
Yunwei Mao ◽  
Lallit Anand

If an elastomeric material is subjected to sufficiently large deformations, it eventually fractures. There are two typical micromechanisms of failure in such materials: chain scission and crosslink failure. The chain scission failure mode is mainly observed in polymers with strong covalent crosslinks, while the crosslink failure mode is observed in polymers with weak crosslinks. In two recent papers, we have proposed a theory for progressive damage and rupture of polymers with strong covalent crosslinks. In this paper, we extend our previous framework and formulate a theory for modeling failure of elastomeric materials with weak crosslinks. We first introduce a model for the deformation of a single chain with weak crosslinks at each of its two ends using statistical mechanics arguments, and then upscale the model from a single chain to the continuum level for a polymer network. Finally, we introduce a damage variable to describe the progressive damage and failure of polymer networks. A central feature of our theory is the recognition that the free energy of elastomers is not entirely entropic in nature; there is also an energetic contribution from the deformation of the backbone bonds in a chain and/or the crosslinks. For polymers with weak crosslinks, this energetic contribution is mainly from the deformation of the crosslinks. It is this energetic part of the free energy which is the driving force for progressive damage and fracture of elastomeric materials. Moreover, we show that for elastomeric materials in which fracture occurs by crosslink stretching and scission, the classical Lake–Thomas scaling—that the toughness Gc of an elastomeric material is proportional to 1/G0, with G0=NkBϑ the ground-state shear modulus of the material—does not hold. A new scaling is proposed, and some important consequences of this scaling are remarked upon.


2010 ◽  
Vol 154-155 ◽  
pp. 1100-1103
Author(s):  
Ru Shu Peng ◽  
De Wen Tang ◽  
Qiong Liu

On the property of repeated impact load, the attrition, hardening and plasticity warp of the laser cladding sampling were researched by using stress wave spread theory. Results show that under repeated impact loads, stress wave occurs on the metallurgical joint surface of the coat and the basis, forming stretch wave that causes coat slitting and angle splitting. The micro-pits failure and deep exfoliation occur on the coat surface because of the stress centralization. The accumulation of impact load energy cause hardness change and plasticity warp.


Author(s):  
Fangjuan Duan ◽  
Weiguang Liu ◽  
De Xie ◽  
Jingxi Liu ◽  
Zhiqiang Hu

Ships and offshore structures are often exposed to various types of repeated impact loads, such as wave slamming, floating ice impacts and ship collisions which will cause large deformation or even fracture. With imperfections due to the process of construction or damage caused by accidents, the load carrying capacity of structures will decrease. This paper investigates the load carrying capacity of aluminum alloy plate with an initial crack under repeated impact loads by means of experiments and numerical simulations. In the experiments, the prepared specimens with crack and without crack are impacted repeatedly up to plate perforation by releasing a hemispherical-headed cylindrical hammer. Numerical simulations are carried out with ABAQUS/Explicit software. The numerical models are built according to the actual experimental conditions. Comparison of the numerical predictions with the experimental results shows reasonable agreement. It is found that aluminum alloy plates under repeated impacts are sensitive to initial cracks. The fracture mode and plastic deformation of aluminum alloy plates can also be affected.


2010 ◽  
Vol 24 (4) ◽  
pp. 577-584 ◽  
Author(s):  
Luigi Biolzi ◽  
Sara Cattaneo ◽  
Gianpaolo Rosati

Sign in / Sign up

Export Citation Format

Share Document