A General Framework for Real-time 3D Target Position Estimation Combining a Single kV Imager and an External Respiratory Monitor

2010 ◽  
Vol 78 (3) ◽  
pp. S666-S667
Author(s):  
B. Cho ◽  
P.R. Poulsen ◽  
P.J. Keall
Author(s):  
Sang C. Lee ◽  
Syamsul Rizal ◽  
HeungJu Ahn

This paper proposes a real-time local positioning system (RT-LPs) utilizing a mobile platform equipped with three anchor nodes placed in a right-angle triangle formation for a real-time locating system (RTLS). After deriving an analytic formula to calculate the target position utilizing the measured distances among anchor nodes and the target node, we find that four parameters have an effect on the position error of the target node. The spacing between anchors is a design parameter that must be large enough to the reduce position error. However, the distance from the anchor node to the target node is an operation parameter that must be small enough to reduce the position error. Additionally, the measured ranges among the anchors and the target node have probabilistic distributions with a mean and variance, which are dominant parameters that have effects on the position error. A comparison study was conducted to determine the effects of the parameters of the target position in both a simulation and an experiment, showing rates of approximately 4% ~ 10%. These findings indicate that our simulation can work properly with the proposed method after assuming that the distance error is a Gaussian model.


2021 ◽  
Vol 13 (15) ◽  
pp. 2997
Author(s):  
Zheng Zhao ◽  
Weiming Tian ◽  
Yunkai Deng ◽  
Cheng Hu ◽  
Tao Zeng

Wideband multiple-input-multiple-output (MIMO) imaging radar can achieve high-resolution imaging with a specific multi-antenna structure. However, its imaging performance is severely affected by the array errors, including the inter-channel errors and the position errors of all the transmitting and receiving elements (TEs/REs). Conventional calibration methods are suitable for the narrow-band signal model, and cannot separate the element position errors from the array errors. This paper proposes a method for estimating and compensating the array errors of wideband MIMO imaging radar based on multiple prominent targets. Firstly, a high-precision target position estimation method is proposed to acquire the prominent targets’ positions without other equipment. Secondly, the inter-channel amplitude and delay errors are estimated by solving an equation-constrained least square problem. After this, the element position errors are estimated with the genetic algorithm to eliminate the spatial-variant error phase. Finally, the feasibility and correctness of this method are validated with both simulated and experimental datasets.


2021 ◽  
Vol 139 ◽  
pp. 103735
Author(s):  
Mengqian Chen ◽  
Jiang Wu ◽  
Shunda Li ◽  
Jinyue Liu ◽  
Hideo Yokota ◽  
...  

Author(s):  
Martina Deplano ◽  
Giancarlo Ruffo

In this chapter, the authors discuss the state-of-the-art of Geo-Social systems and Recommender systems, which are becoming extremely popular for users accessing social media trough mobile devices. Moreover, they introduce a general framework based on the interaction among those systems and the “Game With A Purpose” (GWAP) paradigm. The proposed framework/platform can help researchers to understand geo-social dynamics in order to design and test new services, such as recommenders of places of interest for tourists, real-time traffic information systems, personalized suggestions of social events, and so forth. To target the governance of such complexity, relevant data must be collected by the investigators, shared with the community, and analyzed to find dynamical patterns that correlate spatial-temporal information with the user’s preferences and objectives. The authors argue that the GWAP approach can be exploited to successfully satisfy many of these tasks.


Sign in / Sign up

Export Citation Format

Share Document