scholarly journals 3D Dose Predictions and Plan Quality Assessment in MRI guided Online Plan Adaptation Using Machine Learning Models

2020 ◽  
Vol 108 (3) ◽  
pp. e303-e304
Author(s):  
D. Yang ◽  
Y. Fu ◽  
A. Thomas
2021 ◽  
Author(s):  
Mikhail Korovnik ◽  
Kyle Hippe ◽  
Jie Hou ◽  
Dong Si ◽  
Kiyomi Kishaba ◽  
...  

ABSTRACTMotivationIt has been a challenge for biologists to determine 3D shapes of proteins from a linear chain of amino acids and understand how proteins carry out life’s tasks. Experimental techniques, such as X-ray crystallography or Nuclear Magnetic Resonance, are time-consuming. This highlights the importance of computational methods for protein structure predictions. In the field of protein structure prediction, ranking the predicted protein decoys and selecting the one closest to the native structure is known as protein model quality assessment (QA), or accuracy estimation problem. Traditional QA methods don’t consider different types of features from the protein decoy, lack various features for training machine learning models, and don’t consider the relationship between features. In this research, we used multi-scale features from energy score to topology of the protein structure, and proposed a hierarchical architecture for training machine learning models to tackle the QA problem.ResultsWe introduce a new single-model QA method that incorporates multi-scale features from protein structures, utilizes the hierarchical architecture of training machine learning models, and predicts the quality of any protein decoy. Based on our experiment, the new hierarchical architecture is more accurate compared to traditional machine learning-based methods. It also considers the relationship between features and generates additional features so machine learning models can be trained more accurately. We trained our new tool, SynthQA, on the CASP dataset (CASP10 to CASP12), and validated our method on 33 targets from the latest CASP 14 dataset. The result shows that our method is comparable to other state-of-the-art single-model QA methods, and consistently outperforms each of the 14 used features.Availabilityhttps://github.com/Cao-Labs/[email protected]


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


2021 ◽  
Author(s):  
Norberto Sánchez-Cruz ◽  
Jose L. Medina-Franco

<p>Epigenetic targets are a significant focus for drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represents a large amount of structure-activity relationships that has not been exploited thus far for the development of predictive models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 26318 compounds with a quantitative measure of biological activity for 55 protein targets with epigenetic activity. Through a systematic comparison of machine learning models trained on molecular fingerprints of different design, we built predictive models with high accuracy for the epigenetic target profiling of small molecules. The models were thoroughly validated showing mean precisions up to 0.952 for the epigenetic target prediction task. Our results indicate that the herein reported models have considerable potential to identify small molecules with epigenetic activity. Therefore, our results were implemented as freely accessible and easy-to-use web application.</p>


2020 ◽  
Author(s):  
Shreya Reddy ◽  
Lisa Ewen ◽  
Pankti Patel ◽  
Prerak Patel ◽  
Ankit Kundal ◽  
...  

<p>As bots become more prevalent and smarter in the modern age of the internet, it becomes ever more important that they be identified and removed. Recent research has dictated that machine learning methods are accurate and the gold standard of bot identification on social media. Unfortunately, machine learning models do not come without their negative aspects such as lengthy training times, difficult feature selection, and overwhelming pre-processing tasks. To overcome these difficulties, we are proposing a blockchain framework for bot identification. At the current time, it is unknown how this method will perform, but it serves to prove the existence of an overwhelming gap of research under this area.<i></i></p>


Sign in / Sign up

Export Citation Format

Share Document