scholarly journals Application of active piezoelectric patches in controlling the dynamic response of a thin rectangular plate under a moving mass

2009 ◽  
Vol 46 (11-12) ◽  
pp. 2429-2443 ◽  
Author(s):  
Fayaz R. Rofooei ◽  
Ali Nikkhoo
2020 ◽  
pp. 107754632093313 ◽  
Author(s):  
Sajjad Seifoori ◽  
Ahmad Mahdian Parrany ◽  
Sajjad Darvishinia

This article presents experimental studies on the dynamic response of a thin rectangular plate with clamped boundary conditions subjected to a moving mass. The designed experimental setup is described in detail, and the obtained experimental results are compared with theoretical solutions. In this regard, the governing motion equation of the thin rectangular plate excited by a moving mass is formulated based on the classical plate theory, and the eigenfunction expansion technique is used to solve the equation. Parametric studies are carried out to investigate the effect of some parameters, including the moving object mass and velocity, as well as the plate’s aspect ratio and thickness, on the dynamic response of the plate based on the time history of the plate’s central point deflection.


2001 ◽  
Vol 39 (9) ◽  
pp. 797-806 ◽  
Author(s):  
M.R. Shadnam ◽  
M. Mofid ◽  
J.E. Akin

2001 ◽  
Vol 21 (2) ◽  
pp. 147-163 ◽  
Author(s):  
Hirohide Serizawa ◽  
Kohei Hongo ◽  
Hirokazu Kobayashi

2012 ◽  
Vol 166-169 ◽  
pp. 2871-2875
Author(s):  
Yan Chang Wang ◽  
Ke Liang Ren ◽  
Yan Dong ◽  
Ming Guang Wu

To consider the deformation of thin rectangular plate under temperature. In this paper, the wavelet multi-scale method was used to solve the thin plate governing differential equations with four different initial or boundary conditions. An operational matrix of integration based on the wavelet was established and the procedure for applying the matrix to solve the differential equations was formulated, and got the deflection of thin rectangular plates under temperature. The result provides a theoretical reference for solving thin rectangular plate deflection in thermal environment using multi-scale approach.


1969 ◽  
Vol 287 (4) ◽  
pp. 319-331 ◽  
Author(s):  
M.H. Skeer ◽  
J.A. Hribar
Keyword(s):  

2020 ◽  
Vol 20 (09) ◽  
pp. 2050107
Author(s):  
Iqbal Kaur ◽  
Parveen Lata ◽  
Kulvinder Singh

This study deals with a novel model of forced flexural vibrations in a transversely isotropic thermoelastic thin rectangular plate (TRP) due to time harmonic concentrated load. The mathematical model is prepared for the thin plate in a closed form with the application of Kirchhoff’s love plate theory for nonlocal generalized thermoelasticity with Green–Naghdi (GN)-III theory of thermoelasticity. The nonlocal thin plate has a nonlocal parameter to depict small-scale effect. The double finite Fourier transform technique has been used to find the expressions for lateral deflection, thermal moment and temperature distribution for simply supported (SS) thin rectangular plate in the transformed domain. The effect of classical thermoelasticity (CTE) theory of thermoelasticity and nonlocal parameters has been shown on the computed quantities. Few particular cases have also been deduced.


Sign in / Sign up

Export Citation Format

Share Document