scholarly journals Ellipsoidal anisotropy in linear elasticity: Approximation models and analytical solutions

2011 ◽  
Vol 48 (14-15) ◽  
pp. 2245-2254 ◽  
Author(s):  
Ahmad Pouya
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhi Li ◽  
Song Cen ◽  
Chenfeng Li

Purpose The purpose of this paper is to extend a recent unsymmetric 8-node, 24-DOF hexahedral solid element US-ATFH8 with high distortion tolerance, which uses the analytical solutions of linear elasticity governing equations as the trial functions (analytical trial function) to geometrically nonlinear analysis. Design/methodology/approach Based on the assumption that these analytical trial functions can still properly work in each increment step during the nonlinear analysis, the present work concentrates on the construction of incremental nonlinear formulations of the unsymmetric element US-ATFH8 through two different ways: the general updated Lagrangian (UL) approach and the incremental co-rotational (CR) approach. The key innovation is how to update the stresses containing the linear analytical trial functions. Findings Several numerical examples for 3D structures show that both resulting nonlinear elements, US-ATFH8-UL and US-ATFH8-CR, perform very well, no matter whether regular or distorted coarse mesh is used, and exhibit much better performances than those conventional symmetric nonlinear solid elements. Originality/value The success of the extension of element US-ATFH8 to geometrically nonlinear analysis again shows the merits of the unsymmetric finite element method with analytical trial functions, although these functions are the analytical solutions of linear elasticity governing equations.


Author(s):  
Tim Oliver ◽  
Akira Ishihara ◽  
Ken Jacobsen ◽  
Micah Dembo

In order to better understand the distribution of cell traction forces generated by rapidly locomoting cells, we have applied a mathematical analysis to our modified silicone rubber traction assay, based on the plane stress Green’s function of linear elasticity. To achieve this, we made crosslinked silicone rubber films into which we incorporated many more latex beads than previously possible (Figs. 1 and 6), using a modified airbrush. These films could be deformed by fish keratocytes, were virtually drift-free, and showed better than a 90% elastic recovery to micromanipulation (data not shown). Video images of cells locomoting on these films were recorded. From a pair of images representing the undisturbed and stressed states of the film, we recorded the cell’s outline and the associated displacements of bead centroids using Image-1 (Fig. 1). Next, using our own software, a mesh of quadrilaterals was plotted (Fig. 2) to represent the cell outline and to superimpose on the outline a traction density distribution. The net displacement of each bead in the film was calculated from centroid data and displayed with the mesh outline (Fig. 3).


2013 ◽  
Vol 1 (2) ◽  
pp. 177-191
Author(s):  
Roberto Padua ◽  
Rodel Azura ◽  
Mark Borres ◽  
Adriano Patac Jr. ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document