scholarly journals Periodic crack problem for a functionally graded half-plane an analytic solution

2011 ◽  
Vol 48 (21) ◽  
pp. 3020-3031 ◽  
Author(s):  
Bora Yıldırım ◽  
Özge Kutlu ◽  
Suat Kadıoğlu
1992 ◽  
Author(s):  
R. Mahajan ◽  
F. Erdogan ◽  
Y. T. Chou
Keyword(s):  

2008 ◽  
Vol 75 (5) ◽  
Author(s):  
Bora Yıldırım ◽  
Suphi Yılmaz ◽  
Suat Kadıoğlu

The objective of this study is to investigate a particular type of crack problem in a layered structure consisting of a substrate, a bond coat, and an orthotropic functionally graded material coating. There is an internal crack in the orthotropic coating layer. It is parallel to the coating bond-coat interface and perpendicular to the material gradation of the coating. The position of the crack inside the coating is kept as a variable. Hence, the case of interface crack is also addressed. The top and bottom surfaces of the three layer structure are subjected to different temperatures and a two-dimensional steady-state temperature distribution develops. The case of compressively stressed coating is considered. Under this condition, buckling can occur, the crack can propagate, and the coating is prone to delamination. To predict the onset of delamination, one needs to know the fracture mechanics parameters, namely, Mode I and Mode II stress intensity factors and energy release rates. Hence, temperature distributions and fracture parameters are calculated by using finite element method and displacement correlation technique. Results of this study present the effects of boundary conditions, geometric parameters (crack length and crack position), and the type of gradation on fracture parameters.


2012 ◽  
Vol 157-158 ◽  
pp. 964-969 ◽  
Author(s):  
Romik Khajehtourian ◽  
Saeed Adibnazari ◽  
Samaneh Tashi

The sliding frictional contact problem for a laterally graded half-plane has been considered. Two finite element (FE) models, in macro and micro scales have been developed to investigate the effective parameters in contact mechanics of laterally graded materials loaded by flat and triangular rigid stamps. In macro scale model, the laterally graded half-plane is discretized by piecewise homogeneous layers for which the material properties are specified at the centroids by Mori-Tanaka method. In micro scale model, functionally graded material (FGM) structure has been modeled as ideal solid quadrant particles which are spatially distributed in a homogeneous matrix. Boundary conditions and loading is the same in both models. The microstructure has modeled as rearrangement and sizes changing of particles are possible to provide the possibility of crack nucleation investigation in non-singular regions. Analyses and comparison of the results showed that micro and macro scale results are in very good agreement. Also, increasing the grains aspect ratio and using optimum distribution of grains decrease stress distribution roughness on the surface. Therefore, the possibility of surface cracking far from stamp’s edges decreased.


Sign in / Sign up

Export Citation Format

Share Document