arbitrary position
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 30)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Daniel J Riddoch ◽  
David A Hills

We consider the state of stress created by the presence of an edge dislocation at an arbitrary position, in a wedge of arbitrary internal angle. A method for determining the state of stress in the wedge is demonstrarted and verified against finite element method simulations. Furthermore, a Mellin transform is employed to ensure that the free surfaces of the wedge remain traction free along their length.


2021 ◽  
Vol 8 ◽  
Author(s):  
Pin Huang ◽  
Haoming Xing ◽  
Xun Zou ◽  
Qi Han ◽  
Ke Liu ◽  
...  

We propose a method based on neural networks to accurately predict hydration sites in proteins. In our approach, high-quality data of protein structures are used to parametrize our neural network model, which is a differentiable score function that can evaluate an arbitrary position in 3D structures on proteins and predict the nearest water molecule that is not present. The score function is further integrated into our water placement algorithm to generate explicit hydration sites. In experiments on the OppA protein dataset used in previous studies and our selection of protein structures, our method achieves the highest model quality in terms of F1 score, compared to several previous studies.


2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Yi-Wei Tsai ◽  
Jhih-Min Lin ◽  
Chun-Yu Chen ◽  
Ying Chen ◽  
Bi-Hsuan Lin ◽  
...  

X-ray ptychography, a technique based on scanning and processing of coherent diffraction patterns, is a non-destructive imaging technique with a high spatial resolution far beyond the focused beam size. Earlier demonstrations of hard X-ray ptychography at Taiwan Photon Source (TPS) using an in-house program successfully recorded the ptychographic diffraction patterns from a gold-made Siemens star as a test sample and retrieved the finest inner features of 25 nm. Ptychography was performed at two beamlines with different focusing optics: a pair of Kirkpatrick–Baez mirrors and a pair of nested Montel mirrors, for which the beam sizes on the focal planes were 3 µm and 200 nm and the photon energies were from 5.1 keV to 9 keV. The retrieved spatial resolutions are 20 nm to 11 nm determined by the 10–90% line-cut method and half-bit threshold of Fourier shell correlation. This article describes the experimental conditions and compensation methods, including position correction, mixture state-of-probe, and probe extension methods, of the aforementioned experiments. The discussions will highlight the criteria of ptychographic experiments at TPS as well as the opportunity to characterize beamlines by measuring factors such as the drift or instability of beams or stages and the coherence of beams. Besides, probe functions, the full complex fields illuminated on samples, can be recovered simultaneously using ptychography. Theoretically, the wavefield at any arbitrary position can be estimated from one recovered probe function undergoing wave-propagating. The verification of probe-propagating has been carried out by comparing the probe functions obtained by ptychography and undergoing wave-propagating located at 0, 500 and 1000 µm relative to the focal plane.


2021 ◽  
Vol 228 (1) ◽  
pp. 551-588
Author(s):  
David Gregor ◽  
Peter Moczo ◽  
Jozef Kristek ◽  
Arnaud Mesgouez ◽  
Gaëlle Lefeuve-Mesgouez ◽  
...  

SUMMARY We present a new methodology of the finite-difference (FD) modelling of seismic wave propagation in a strongly heterogeneous medium composed of poroelastic (P) and (strictly) elastic (E) parts. The medium can include P/P, P/E and E/E material interfaces of arbitrary shapes. The poroelastic part can be with (i) zero resistive friction, (ii) non-zero constant resistive friction or (iii) JKD model of the frequency-dependent permeability and resistive friction. Our FD scheme is capable of subcell resolution: a material interface can have an arbitrary position in the spatial grid. The scheme keeps computational efficiency of the scheme for a smoothly and weakly heterogeneous medium (medium without material interfaces). Numerical tests against independent analytical, semi-analytical and spectral-element methods prove the efficiency and accuracy of our FD modelling. In numerical examples, we indicate effect of the P/E interfaces for the poroelastic medium with a constant resistive friction and medium with the JKD model of the frequency-dependent permeability and resistive friction. We address the 2-D P-SV problem. The approach can be readily extended to the 3-D problem.


Author(s):  
A. H. S. Iyer ◽  
M. H. Colliander

Abstract Background The trend in miniaturisation of structural components and continuous development of more advanced crystal plasticity models point towards the need for understanding cyclic properties of engineering materials at the microscale. Though the technology of focused ion beam milling enables the preparation of micron-sized samples for mechanical testing using nanoindenters, much of the focus has been on monotonic testing since the limited 1D motion of nanoindenters imposes restrictions on both sample preparation and cyclic testing. Objective/Methods In this work, we present an approach for cyclic microcantilever bending using a micromanipulator setup having three degrees of freedom, thereby offering more flexibility. Results The method has been demonstrated and validated by cyclic bending of Alloy 718plus microcantilevers prepared on a bulk specimen. The experiments reveal that this method is reliable and produces results that are comparable to a nanoindenter setup. Conclusions Due to the flexibility of the method, it offers straightforward testing of cantilevers manufactured at arbitrary position on bulk samples with fully reversed plastic deformation. Specific microstructural features, e.g., selected orientations, grain boundaries, phase boundaries etc., can therefore be easily targeted.


2021 ◽  
Author(s):  
Ivan Hornak ◽  
Heiko Rieger

Cytotoxic T lymphocytes (T cells) and natural killer cells form a tight contact, the immunological synapse (IS), with target cells, where they release their lytic granules containing perforin/granzyme and cytokine containing vesicles. During this process the cell repolarizes and moves the microtubule organizing center (MTOC) towards the IS. In the first part of our work we developed a computational model for the molecular-motor-driven motion of the MT cytoskeleton confined between plasma membrane and nucleus during T cell polarization and analyzed different mechanisms (cortical sliding and capture-shrinkage) that have been proposed on the basis of recent experiments. Here we use this model to analyze the dynamics of the MTOC during the repositioning process in situations in which a) the IS is in an arbitrary position with respect to the initial position of the MTOC and b) the T cell has two IS at two arbitrary positions. We observe several scenarios that have also been reported experimentally: the MTOC alternates stochastically (but with a well defined average transition time) between the two IS; it wiggles in between the two IS without transiting to one of the two; or it is at some point pulled to one of the two IS and stays there. Our model allows to predict which scenario emerges in dependency of the mechanisms in action and the number of dyneins present.


2021 ◽  
Vol 35 (12) ◽  
pp. 1477-1484
Author(s):  
Chao Huang ◽  
Yan Zhao ◽  
Wei Yan ◽  
Yanxing Ji ◽  
Qiangqiang Liu ◽  
...  

In this paper, a twisted-wire pairs (TWP) with random non-uniform twisting is established. It is divided into a complete pitch segment and a noncomplete pitch segment by the ratio between the pitch and the length. The randomness of the actual TWP cable is accurately simulated by the following methods: 1) random combination of complete pitch segments; 2) random combination of non-complete pitch segments; 3) random combination between 1) and 2). Based on the TWP model, an equivalent multi-conductor transmission lines (MTLs) model can be obtained. The neural network algorithm is introduced to describe the complex relationship between the arbitrary position of the TWP and the per-unit-length (p.u.l) parameter matrix. In addition, the crosstalk and the common-mode (CM) and differential-mode (DM) noise under field-to-wire coupling are predicted. The numerical results show that crosstalk and CM/DM noise in TWP cable are susceptible to the twisted pitch at high frequencies. Compared with full-wave simulation, the accuracy of the proposed method is proved.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Shuai Wang ◽  
Zi-Lan Deng ◽  
Yujie Wang ◽  
Qingbin Zhou ◽  
Xiaolei Wang ◽  
...  

AbstractThe control of polarization, an essential property of light, is of broad scientific and technological interest. Polarizers are indispensable optical elements for direct polarization generation. However, arbitrary polarization generation, except that of common linear and circular polarization, relies heavily on bulky optical components such as cascading linear polarizers and waveplates. Here, we present an effective strategy for designing all-in-one full Poincaré sphere polarizers based on perfect arbitrary polarization conversion dichroism and implement it in a monolayer all-dielectric metasurface. This strategy allows preferential transmission and conversion of one polarization state located at an arbitrary position on the Poincaré sphere to its handedness-flipped state while completely blocking its orthogonal state. In contrast to previous methods that were limited to only linear or circular polarization, our method manifests perfect dichroism of nearly 100% in theory and greater than 90% experimentally for arbitrary polarization states. By leveraging this attractive dichroism, our demonstration of the generation of polarization beams located at an arbitrary position on a Poincaré sphere directly from unpolarized light can substantially extend the scope of meta-optics and dramatically promote state-of-the-art nanophotonic devices.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 288
Author(s):  
Adam Wolniakowski ◽  
Charalampos Valsamos ◽  
Kanstantsin Miatliuk ◽  
Vassilis Moulianitis ◽  
Nikos Aspragathos

The determination of the optimal position of a robotic task within a manipulator’s workspace is crucial for the manipulator to achieve high performance regarding selected aspects of its operation. In this paper, a method for determining the optimal task placement for a serial manipulator is presented, so that the required joint torques are minimized. The task considered comprises the exercise of a given force in a given direction along a 3D path followed by the end effector. Given that many such tasks are usually conducted by human workers and as such the utilized trajectories are quite complex to model, a Human Robot Interaction (HRI) approach was chosen to define the task, where the robot is taught the task trajectory by a human operator. Furthermore, the presented method considers the singular free paths of the manipulator’s end-effector motion in the configuration space. Simulation results are utilized to set up a physical execution of the task in the optimal derived position within a UR-3 manipulator’s workspace. For reference the task is also placed at an arbitrary “bad” location in order to validate the simulation results. Experimental results verify that the positioning of the task at the optimal location derived by the presented method allows for the task execution with minimum joint torques as opposed to the arbitrary position.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
A. Rodriguez-Martinez ◽  
L. Svilainis ◽  
M. A. De la Casa-Lillo ◽  
T. G. Alvarez-Arenas ◽  
A. Aleksandrovas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document