scholarly journals Effective spring boundary conditions for modelling wave transmission through a composite with a random distribution of interface circular cracks

2019 ◽  
Vol 165 ◽  
pp. 115-126 ◽  
Author(s):  
Mikhail V. Golub ◽  
Olga V. Doroshenko
Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 606
Author(s):  
Yuan-Jyh Lan

In this paper, the problem of the interaction between a periodic linear wave and offshore aquatic vegetation is investigated. The aquatic vegetation field is considered as a flexible permeable system. A vegetation medium theory is proposed based on Lan–Lee’s poro-elastomer theory, in which linearizing vegetation friction resistance is used to describe fluid motion in the vegetation medium. The study involves boundary conditions for free surface water in emergent vegetation media that have been of less concern in previous studies. The analytical solutions of the vegetation medium and wave fields are derived by the partitioning method combined with matching boundary conditions for neighboring regions. An estimation formula for a modification factor is proposed to evaluate the linear vegetation friction coefficient, which can reasonably compare the analytical solution with relevant past cases in terms of wave transmission. Wave reflection, transmission, and attenuation induced by the effects of the characteristics of the vegetation are studied. The results indicate that an increase in the drag coefficient, stem diameter, stem density, spatial coverage, and plant stiffness leads to the emergency vegetation inducing higher wave energy dissipation and reducing the wave transmission. Vegetation stiffness is a significant factor affecting the drag coefficient.


2019 ◽  
Vol 42 ◽  
Author(s):  
Laurel Symes ◽  
Thalia Wheatley

AbstractAnselme & Güntürkün generate exciting new insights by integrating two disparate fields to explain why uncertain rewards produce strong motivational effects. Their conclusions are developed in a framework that assumes a random distribution of resources, uncommon in the natural environment. We argue that, by considering a realistically clumped spatiotemporal distribution of resources, their conclusions will be stronger and more complete.


Author(s):  
K.R. Porter

Most types of cells are known from their structure and overall form to possess a characteristic organization. In some instances this is evident in the non-random disposition of organelles and such system subunits as cisternae of the endoplasmic reticulum or the Golgi complex. In others it appears in the distribution and orientation of cytoplasmic fibrils. And in yet others the organization finds expression in the non-random distribution and orientation of microtubules, especially as found in highly anisometric cells and cell processes. The impression is unavoidable that in none of these cases is the organization achieved without the involvement of the cytoplasmic ground substance (CGS) or matrix. This impression is based on the fact that a matrix is present and that in all instances these formed structures, whether membranelimited or filamentous, are suspended in it. In some well-known instances, as in arrays of microtubules which make up axonemes and axostyles, the matrix resolves itself into bridges (and spokes) between the microtubules, bridges which are in some cases very regularly disposed and uniform in size (Mcintosh, 1973; Bloodgood and Miller, 1974; Warner and Satir, 1974).


Author(s):  
Corazon D. Bucana

In the circulating blood of man and guinea pigs, glycogen occurs primarily in polymorphonuclear neutrophils and platelets. The amount of glycogen in neutrophils increases with time after the cells leave the bone marrow, and the distribution of glycogen in neutrophils changes from an apparently random distribution to large clumps when these cells move out of the circulation to the site of inflammation in the peritoneal cavity. The objective of this study was to further investigate changes in glycogen content and distribution in neutrophils. I chose an intradermal site because it allows study of neutrophils at various stages of extravasation.Initially, osmium ferrocyanide and osmium ferricyanide were used to fix glycogen in the neutrophils for ultrastructural studies. My findings confirmed previous reports that showed that glycogen is well preserved by both these fixatives and that osmium ferricyanide protects glycogen from solubilization by uranyl acetate.I found that osmium ferrocyanide similarly protected glycogen. My studies showed, however, that the electron density of mitochondria and other cytoplasmic organelles was lower in samples fixed with osmium ferrocyanide than in samples fixed with osmium ferricyanide.


Sign in / Sign up

Export Citation Format

Share Document