Alternative models for transient convection heat transfer in external flows over a plate exposed to a variable heat flux

2004 ◽  
Vol 43 (8) ◽  
pp. 809-816 ◽  
Author(s):  
Mohammed Lachi ◽  
Mourad Rebay ◽  
Emilia Cerna Mladin ◽  
Jacques Padet
Author(s):  
Chen-Ru Zhao ◽  
Zhen Zhang ◽  
Qian-Feng Liu ◽  
Han-Liang Bo ◽  
Pei-Xue Jiang

Numerical investigations are performed on the convection heat transfer of supercritical pressure fluid flowing through vertical mini tube with inner diameter of 0.27 mm and inlet Reynolds number of 1900 under various heat fluxes conditions using low Reynolds number k-ε turbulence models due to LB (Lam and Bremhorst), LS (Launder and Sharma) and V2F (v2-f). The predictions are compared with the corresponding experimentally measured values. The prediction ability of various low Reynolds number k-ε turbulence models under deteriorated heat transfer conditions induced by combinations of buoyancy and flow acceleration effects are evaluated. Results show that all the three models give fairly good predictions of local wall temperature variations in conditions with relatively high inlet Reynolds number. For cases with relatively low inlet Reynolds number, V2F model is able to capture the general trends of deteriorated heat transfer when the heat flux is relatively low. However, the LS and V2F models exaggerate the flow acceleration effect when the heat flux increases, while the LB model produces qualitative predictions, but further improvements are still needed for quantitative prediction. Based on the detailed flow and heat transfer information generated by simulation, a better understanding of the mechanism of heat transfer deterioration is obtained. Results show that the redistribution of flow field induced by the buoyancy and flow acceleration effects are main factors leading to the heat transfer deterioration.


Author(s):  
Jafar Madadnia

In the absence of a simple technique to predict convection heat transfer on building integrated photovoltaic (BIPV) surfaces, a mobile probe with two thermocouples was designed. Thermal boundary layers on vertical flat surfaces of a photovoltaic (PV) and a metallic plate were traversed. The plate consisted of twelve heaters where heat flux and surface temperature were controlled and measured. Uniform heat flux condition was developed on the heaters to closely simulate non-uniform temperature distribution on vertical PV modules. The two thermocouples on the probe measured local air temperature and contact temperature with the wall surface. Experimental results were presented in the forms of local Nusselt numbers versus Rayleigh numbers “Nu=a * (Ra)b”, and surface temperature versus dimensionless height [Ts -T∞= c*(z/h)d]. The constant values for “a”, “b”, “c” and “d” were determined from the best curve-fitting to the power-law relation. The convection heat transfer predictions from the empirical correlations were found to be in consistent with those predictions made by a number of correlations published in the open literature. A simple technique is then proposed to employ two experimental data from the probe to refine empirical correlations as the operational conditions change. A flexible technique to update correlations is of prime significance requirement in thermal design and operation of BIPV modules. The work is in progress to further extend the correlation to predict the combined radiation and convection on inclined PVs and channels.


Sign in / Sign up

Export Citation Format

Share Document