flows through porous media
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 19)

H-INDEX

22
(FIVE YEARS 2)

Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1254-1267
Author(s):  
Martin Bruschewski ◽  
Sam Flint ◽  
Sid Becker

Studies that use magnetic resonance velocimetry (MRV) to assess flows through porous media require a sufficiently small voxel size to determine the velocity field at a sub-pore scale. The smaller the voxel size, the less information is lost through the discretization. However, the measurement uncertainty and the measurement time are increased. Knowing the relationship between voxel size and measurement accuracy would help researchers select a voxel size that is not too small in order to avoid unnecessary measurement effort. This study presents a systematic parameter study with a low-Reynolds-number flow of a glycerol–water mixture sent through a regularly periodic porous matrix with a pore size of 5 mm. The matrix was a 3-dimensional polymer print, and velocity-encoded MRV measurements were made at 15 different voxel sizes between 0.42 mm and 4.48 mm. The baseline accuracy of the MRV velocity data was examined through a comparison with a computational fluid dynamics (CFD) simulation. The experiment and simulation show very good agreement, indicating a low measurement error. Starting from the smallest examined voxel size, the influence of the voxel size on the accuracy of the velocity data was then examined. This experiment enables us to conclude that a voxel size of 0.96 mm, which corresponds to 20% of the pore size, is sufficient. The volume-averaged results do not change below a voxel size of 20% of the pore size, whereas systematic deviations occur with larger voxels. The same trend is observed with the local velocity data. The streamlines calculated from the MRV velocity data are not influenced by the voxel size for voxels of up to 20% of the pore size, and even slightly larger voxels still show good agreement. In summary, this study shows that even with a relatively low measurement resolution, quantitative 3-dimensional velocity fields can be obtained through porous flow systems with short measurement times and low measurement uncertainty.


2021 ◽  
Vol 118 (38) ◽  
pp. e2111651118
Author(s):  
Simon J. Haward ◽  
Cameron C. Hopkins ◽  
Amy Q. Shen

Viscoelastic flows through porous media become unstable and chaotic beyond critical flow conditions, impacting widespread industrial and biological processes such as enhanced oil recovery and drug delivery. Understanding the influence of the pore structure or geometry on the onset of flow instability can lead to fundamental insights into these processes and, potentially, to their optimization. Recently, for viscoelastic flows through porous media modeled by arrays of microscopic posts, Walkama et al. [D. M. Walkama, N. Waisbord, J. S. Guasto, Phys. Rev. Lett. 124, 164501 (2020)] demonstrated that geometric disorder greatly suppressed the strength of the chaotic fluctuations that arose as the flow rate was increased. However, in that work, disorder was only applied to one originally ordered configuration of posts. Here, we demonstrate experimentally that, given a slightly modified ordered array of posts, introducing disorder can also promote chaotic fluctuations. We provide a unifying explanation for these contrasting results by considering the effect of disorder on the occurrence of stagnation points exposed to the flow field, which depends on the nature of the originally ordered post array. This work provides a general understanding of how pore geometry affects the stability of viscoelastic porous media flows.


2021 ◽  
Author(s):  
Joris Heyman ◽  
Daniel R. Lester ◽  
Tanguy Le Borgne

<p>Recent works have shown that laminar flows through porous media generate Lagrangian chaos at pore scale, with strong implications for a range of transport, reactive, and biological processes in the subsurface. The characterization and understanding of mixing dynamics in these opaque environments remains an outstanding challenge. We present a novel experimental technique based upon high-resolution imaging of the scalar signature produced by push-pull flows through various porous materials (beads, gravels, sandstones) at high Péclet number. We show that this method provides a direct image (see below) of the invariant unstable manifold of the chaotic flow, while allowing a precise quantification of the incompleteness of mixing at pore scale. In the limit of large Péclet numbers, we demonstrate that the decay rate of the scalar variance is directly related to the Lyapunov exponent of the chaotic flow. Thus, this new push-pull method has the potential to provide a complete characterization of chaotic mixing dynamics in a large class of opaque porous materials.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.2deb367885ff54776299061/sdaolpUECMynit/12UGE&app=m&a=0&c=2dcb0848f87d632804dd684b486c506f&ct=x&pn=gepj.elif&d=1" alt=""></p><p> </p>


2020 ◽  
Vol 4 (4) ◽  
pp. 57
Author(s):  
Moreno Concezzi ◽  
Renato Spigler

A numerical method for solving fractional partial differential equations (fPDEs) of the diffusion and reaction–diffusion type, subject to Dirichlet boundary data, in three dimensions is developed. Such fPDEs may describe fluid flows through porous media better than classical diffusion equations. This is a new, fractional version of the Alternating Direction Implicit (ADI) method, where the source term is balanced, in that its effect is split in the three space directions, and it may be relevant, especially in the case of anisotropy. The method is unconditionally stable, second-order in space, and third-order in time. A strategy is devised in order to improve its speed of convergence by means of an extrapolation method that is coupled to the PageRank algorithm. Some numerical examples are given.


Sign in / Sign up

Export Citation Format

Share Document