scholarly journals Effect of solvent on specific heat capacity enhancement of binary molten salt-based carbon nanotube nanomaterials for thermal energy storage

2015 ◽  
Vol 98 ◽  
pp. 219-227 ◽  
Author(s):  
Byeongnam Jo ◽  
Debjyoti Banerjee
Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2266
Author(s):  
Binjian Ma ◽  
Donghyun Shin ◽  
Debjyoti Banerjee

Molten salts mixed with nanoparticles have been shown as a promising candidate as the thermal energy storage (TES) material in concentrated solar power (CSP) plants. However, the conventional method used to prepare molten salt nanofluid suffers from a high material cost, intensive energy use, and laborious process. In this study, solar salt-Al2O3 nanofluids at three different concentrations are prepared by a one-step method in which the oxide nanoparticles are generated in the salt melt directly from precursors. The morphologies of the obtained nanomaterials are examined under scanning electron microscopy and the specific heat capacities are measured using the temperature history (T-history) method. A non-linear enhancement in the specific heat capacity of molten salt nanofluid is observed from the thermal characterization at a nanoparticle mass concentration of 0.5%, 1.0%, and 1.5%. In particular, a maximum enhancement of 38.7% in specific heat is found for the nanofluid sample prepared with a target nanoparticle mass fraction of 1.0%. Such an enhancement trend is attributed to the formation of secondary nanostructure between the alumina nanoparticles in the molten salt matrix following a locally-dispersed-parcel pattern. These findings provide new insights to understanding the enhanced energy storage capacity of molten salt nanofluids.


Author(s):  
Zhao Li ◽  
Liu Cui ◽  
B. R. Li ◽  
xiaoze du

The enhancement of the specific heat capacity of molten salt-based nanofluid is investigated via molecular dynamics (MD) simulations. The results show the addition of the nanoparticle indeed enhances the specific...


2021 ◽  
Vol 7 ◽  
Author(s):  
Law Torres Sevilla ◽  
Jovana Radulovic

This paper studies the influence of material thermal properties on the charging dynamics in a low temperature Thermal Energy Storage, which combines sensible and latent heat. The analysis is based on a small scale packed bed with encapsulated PCMs, numerically solved using COMSOL Multiphysics. The PCMs studied are materials constructed based on typical thermal properties (melting temperature, density, specific heat capacity (solid and liquid), thermal conductivity (solid and liquid) and the latent heat) of storage mediums in literature. The range of values are: 25–65°C for the melting temperature, 10–500 kJ/kg for the latent heat, 600–1,000 kg/m3 for the density, 0.1–0.4 W/mK (solid and liquid) for the thermal conductivity and 1,000–2,200 J/kgK (solid and liquid) for the specific heat capacity. The temperature change is monitored at three different positions along the tank. The system consists of a 2D tank with L/D ratio of 1 at a starting temperature of 20°C. Water, as the heat transfer fluid, enters the tank at 90°C. Results indicate that latent heat is a leading parameter in the performance of the system, and that the thermal properties of the PCM in liquid phase influence the overall heat absorption more than its solid counterpart.


Author(s):  
Bharath Dudda ◽  
Donghyun Shin

It is a known fact that the solar energy is the most abundant form of renewable source of energy available abundantly in most of the areas. It is relatively the most promising form of renewable energy through which many developed countries like US, Spain are generating electricity using CSP, PV, and other forms of solar cells. This paper mainly focuses on the Concentrated Solar Power (CSP) and about the method of enhancing the Thermal Energy Storage (TES) capacity. Here, we use molten salt as the Heat Transfer Fluid (HTF) as an alternative to mineral oils and other commonly used HTF. The reasons behind using molten salts have also been listed in the paper. The major disadvantage in molten salts as a HTF is their low specific heat capacity compared to mineral oils. The low specific heat capacity of molten salt can be enhanced by dispersing oxide nanoparticles. In this paper, we synthesized molten salt nanomaterials by dispersing oxide nanoparticles in to selcte4d molten salts. Specific heat capacity measurement was performed using a modulated differential scanning calorimeter (MDSC). Hence, we evaluated the use of molten salt nanomaterials as HTF in CSP.


2021 ◽  
Vol 881 ◽  
pp. 87-94
Author(s):  
Jin Hua Chen

Reducing the melting point, in creasing the thermal stability limit, and enhancing the specific heat capacity of molten salt are the research hotspots in the field of medium and high temperature energy storage in recent years. From the perspectives of the melting point, thermal stability limit, and specific heat capacity of nitrates, we summarize the melting point, thermal stability limit, and specific heat capacity enhancement of molten salts with different compositions and ratios. The melting points of molten salt with different compositions and ratios are compared. Furthermore, the enhancing effect of various nanomaterials on molten salt is elucidated. The application of nitrate molten salt is also summarized to provide a reference for the research and application of novel molten salts. Keywords: Nitrate Molten Salt; Melting Point; Thermal Stability Limit; Specific Heat Capacity; Application


Sign in / Sign up

Export Citation Format

Share Document