Design and performance study of dry cooling system for 25 MW solar power plant operated with supercritical CO2 cycle

2018 ◽  
Vol 132 ◽  
pp. 398-410 ◽  
Author(s):  
M. Monjurul Ehsan ◽  
Xurong Wang ◽  
Zhiqiang Guan ◽  
A.Y. Klimenko
2021 ◽  
Vol 11 (20) ◽  
pp. 9639
Author(s):  
Eduardo de la Rocha Camba ◽  
Fontina Petrakopoulou

Water dependency of power plants undermines energy security by making power generation susceptible to water scarcity. This study evaluates the economic performance of a novel dry-cooling system for a water-independent solar power plant. The proposed cooling system is based on the concept of earth–air heat exchangers, approaching zero environmental impact. The viability of the proposed design is discussed based on both costs and benefits, and it is compared to both conventional dry- and wet-cooling systems. The installation costs of the plant are found to be EUR 13,728/kW, resulting in the substantial levelized cost of electricity of EUR 505.97/MWh. The net present value of the studied design assuming a water-cost saving of EUR 1/m3 is found to be MEUR –139.59. Significantly higher water prices in the future might eventually make the proposed system economically attractive when compared to water-cooling systems. However, the new system would require drastic modifications to become more attractive when compared to existing dry-cooling systems. Specific possibilities to improve it for zero-water use in thermoelectric power plants are further discussed.


Sign in / Sign up

Export Citation Format

Share Document